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Abstract

The ecosystem of the Rust programming language does not have all the necessary tools to produce an
efficient reimplementation of a dynamic language implemented in C. Despite the large number of Rust libraries
available, there are no efficient general-purpose garbage collectors that can be used to build a virtual machine.
The aim of this project is to test if Rust is a suitable host language for dynamic language implementations.
This project shows that it is not possible to implement an efficient system, without implementing a higly
specialised garbage collector.
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Chapter 1

Introduction

Rust is a high-level systems programming language which focuses on memory-safety, and thread-safety. Rust
has been used in a variety of settings with great success, from Command-line interfaces (CLIs) [1, 2], to web
frameworks [3]. Rust also aims to be a replacement for C or C++, because it produces very optimised and
fast code. One of the aims of this project is to assess whether Rust, in its current state, is a suitable language
to build efficient virtual machines in.

The project aims to create an interpreter in Rust in order to prove the following hypothesis:

Hypothesis 1 The libraries that implement garbage collectors for Rust are not suitable for building efficient
virtual machines.

This project builds a virtual machine (VM) for Lua in Rust, which uses a general purpose garbage collector
called gc. The VM uses gc in order to perform garbage collection of Lua objects. The implementation is
benchmarked against different Lua interpreters written in C, and Rust. The results show that the gc library
slows down the VM considerably, and that other Lua implementations written in Rust, such as Luster,
perform better because they implement a custom garbage collector. To better understand the performance
implications of using gc, it was necessary to analyse the behaviour of the VM on a few benchmarks. The
benchmarks revealed that the VM implemented for the purpose of this project is 1288% slower than PUC-Rio
Lua. To understand why, a tool called Valgrind was used to determine the most frequently executed functions
of the VM. The slowdown incurred from using gc is particularly obvious in the benchmark that implements
the Sieve of Eratosthenes algorithm for computing prime numbers. This benchmark tests the table array
optimisation which most Lua interpreters perform. However, executing the VM built in this project on this
benchmark revealed the performance bottleneck of the gc library. More details about this are presented in
chapter 9.

This project builds a VM for the Lua language, because currently there are no projects that implement
Lua in Rust with a general-purpose garbage collector such as gc. Efficient garbage collectors are hard to
implement. Reusing an existing library enables language designers to implement languages in a shorter
amount of time, and also enables early prototyping.

The PUC-Rio Lua implementation provides an interface which can be used by C programs to call functions
defined in Lua, and vice-versa. This is why Lua is said to be an embedable language. Writing a VM for
Lua in Rust would enable Rust programs to do the same, without having to create bindings to the C API
of PUC-Rio Lua. Although this project does not implement such an API, it can be easily extended to allow
Rust projects to embed this VM into their system.

Another objective of the project is to illustrate the strengths and weaknesses of Rust when implementing
interpreters for dynamic languages. Many components of the interpreter are written in safe Rust which means
they benefit from the safety features of the language. However, the type system component is implemented
using unsafe operations, due to the way types are represented in the interpreter. This project also shows the
downsides of the representation of trait objects chosen by the Rust compiler. In particular, the representation
of trait objects creates unnecessary indirection in the value system, which negatively affects the performance
of the VM.
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Chapter 2

Background

2.1 Stages of an interpreter

Interpreters are pieces of software that execute source files written in a particular programming language.
An interpreter defines a virtual machine (VM) in which source code is executed. In order for a source file to
be executed, it must first undergo a series of transformations.

2.1.1 Lexers and parsers

The first steps in any language implementation are the lexing and parsing of the source code.
Lexing is the process of splitting an input file (a stream of bytes) into a stream of predefined tokens (i.e.

words). Each language defines a set of tokens which the lexer will use to split the input file. Usually, when
the lexer finds a token that is not defined, it will stop the process, and report the error to the user.

A parser is a piece of software that assigns a meaning to a stream of tokens based on a grammar. A
grammar is a set of rules which specify how tokens can be put together to form expressions. The input of a
parser is the output of the lexer, which is used to produce an abstract syntax tree (AST), also called a parse
tree.

In order to better understand these two concepts, consider the following example of a simple grammar
that only consists of arithmetic expressions. The tokens of this language are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, and
-. The grammar of this language is:

Z ::= 0

D ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
N ::= D ·N | Z

OP ::= OP ·+ ·N | OP · − ·N | N

An AST for the input 2 + 3 − 1 can be found in figure 2.1. Every internal node of the tree structure
represents a symbol from the grammar, and every leaf node is token of language. Most of the time internal
nodes are called non-terminals, and leaf nodes terminals.

2.1.2 Bytecode generation

The AST produced by the parser is translated into bytecode through a process called compilation. The
compiler is a simple piece of software which traverses the parse tree in post-order, and produces bytecode
based on the structure of the tree. A post-order traversal of a tree means that the children of a node are
processed before the node itself.

The bytecode is a set of instructions which can be executed by an interpreter. There are two main types
of bytecode instructions: register-based and stack-based.

7
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Figure 2.1: The AST for the input 2 + 3− 1

Register-based instructions

This type of instruction operates on virtual registers. The operands of an instruction are registers, and the
result is usually stored in a register as well. A register can be thought of as a memory cell. The virtual
machine provides a finite number of registers. As an example, consider a register-based instruction set for
the simple arithmetic language:

〈reg〉 = add(reg1, reg2)

〈reg〉 = sub(reg1, reg2)

Figure 2.2: A register-based instruction set for the simple arithmetic language.

Listing 2.1: Sequence of register-based instructions for 2 + 3− 1

reg1 = 2

reg2 = 3

reg3 = add(reg1, reg2)

reg1 = 1

reg2 = sub(reg3, reg1)

In figure 2.2, 〈reg〉 specifies the register in which the result of the operation is stored, and 〈reg1〉, 〈reg2〉
are the registers which hold the operands of the instruction.

Listing 2.1 shows the bytecode a compiler might emit for the input 2 + 3− 1. Note that in this case, the
compiler reuses registers 1 and 2, and the final result is stored in register 2.

Stack-based instructions

Stack-based instructions operate on a stack1 which is stored by the VM. Each operation is performed relative
to the top of the stack, which the VM keeps track of.

Figure 2.3 shows a simple stack-based instruction set for the arithmetic language, where 〈num〉 is a
placeholder for a number. The PUSH instruction adds its operand to the top of the stack. The ADD
instruction removes the two top-most values from the stack, and pushes their sum back to the stack. The
SUB instruction works similarly to the ADD instruction.

Listing 2.2 shows how the compiler might emit the bytecode for 2 + 3−1. After the bytecode is executed,
the stack of the VM will have one value, which is the result of the arithmetic expression.

1A stack is a simple First-In-Last-Out (FILO) data structure
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PUSH 〈num〉
ADD

SUB

Figure 2.3: A stack-based instruction set for the simple arithmetic language.

Listing 2.2: Sequence of stack-based instructions for 2 + 3− 1

PUSH 2

PUSH 3

ADD

PUSH 1

SUB

2.1.3 Bytecode execution

The bytecode generated by the compiler is executed by the VM. VMs follow a fetch-decode-execute cycle
in order to execute the instructions of the bytecode, also called the dispatch loop. Interpreters fetch an
instruction, decode it in order to check its type and operands, and then execute it. Each operation defined
in the bytecode has an associated implementation in the VM.

2.2 Garbage collector (GC)

In programming languages such as C or C++, heap allocated memory must be released manually, or the
program leaks memory. Garbage collectors are used to track allocations, and release the memory that is
unreachable by the program. Garbage collectors ease the burden of manual memory management. Since
garbage collection happens at run-time, the execution of a program can be influenced negatively, depending
on how often the GC checks to see if there is any memory to be freed.

2.3 Compilers

The compiler used by an interpreter is usually very simple, and does not perform any major optimisations.
However, there is a simple optimisation that most compilers perform, called constant folding.

2.3.1 Constant folding

This is a straightforward optimisation where operations between constant values are performed at compile-
time, rather than at run-time. This has the benefit of not emitting unnecessary instructions. The more
instructions the interpreter has to execute, the longer the execution of the program will be. If this optimisation
is enabled during compilation, then the code from listing 2.1 is modified to:

Listing 2.3: 2 + 3− 1 compiled with constant folding enabled

1 reg3 = 5

2 reg1 = 1

3 reg2 = sub(reg3, reg1)

On line number 1 of listing 2.3 the compiler folded 2 + 3 into 5, and placed the result into register 3.
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2.3.2 Constant propagation

More complex compilers might also perform constant propagation. This optimisation operates on the byte-
code, replacing all occurrences of those registers which have a constant value with the value itself. This means
that the compiler does not emit unnecessary store instructions. When both constant folding and propagation
are enabled, the compiler emits the following bytecode:

Listing 2.4: 2 + 3− 1 compiled with constant folding and propagation enabled

reg2 = 4

Most interpreters choose to omit this optimisation, and only focus on constant folding [4].

2.4 Intermediate representation (IR)

In general, compilers do not translate ASTs to bytecode or machine code directly, but to an intermediate
representation. This representation is compiler-specific, and it is used solely for optimisation purposes. Some
compilers [5] even use multiple IRs in order to perform more fine-grained optimisations at different levels of
abstraction.

2.4.1 Static single assignment form (SSA)

This is a register-based IR used by many compilers [6, 7, 8]. Other intermediate representations include
Continuation-passing style (CPS) which is used by the Haskell compiler, and is more suitable for compiling
functional languages [9], or a control flow graph (CFG) which is a representation used by compilers to
translate imperative languages to machine code. The GNU C Compiler (GCC) moved from CFG to SSA,
because it reduced the complexity of the compiler [10].

In SSA each variable, also called register, can only be assigned to once. This restriction allows compilers
to perform better optimisations on the code before emitting the final executable. SSA also enables compil-
ers to perform register allocation [11] efficiently, and other optimisation such as constant propagation and
folding [12].

Listing 2.5: 2 + 3− 1 in SSA form

1 reg1 = 2

2 reg2 = 3

3 reg3 = add(reg1, reg2)

4 reg4 = 1

5 reg5 = sub(reg3, reg4)

Listing 2.5 shows the bytecode from listing 2.1 in SSA form. Each register is assigned to only once, but
the values of registers can be read multiple times.

Basic block

A basic block is an ordered collection of instructions. Each block has a single defined entry point (which
is usually the first instruction), and a single exit point. The exit point of a block is marked by a jump or
branching instruction. These two instructions define clear parent-child relationships between basic blocks.
In order to better illustrate the concept of basic blocks, consider the Lua code from listing 2.6, and its SSA
representation in listing 2.7.

In this case, there are 4 basic blocks. BB1 is the block in which the first x is declared, and it also contains
a branching instruction to BB2 and BB3. Both BB2 and BB3 declare their own register for x and jump to
BB4. At run-time, the execution starts in BB1, then moves to either BB2 or BB3 depending on whether the
branching condition is true or not, and then continues to BB4. Basic blocks can be thought of as nodes in
a control-flow graph. Figure 2.4 shows the parent-child relationships that are formed between basic blocks.
This figure is also the control-flow graph of the program from listing 2.6.
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Listing 2.6: A simple Lua program

local x = 1 -- define a local variable x

if x > 0 then

local x = 2 -- shadow the outer x, and declare a new variable x

else

local x = 3 -- same as above, but a different scope

end

Listing 2.7: SSA version of the simple Lua program

1 BB1: {

2 x1 = 1

3 Jump to BB2 if x1 > 0 else jump to BB3

4 }

5 BB2: {

6 x2 = 2

7 Jump to BB4

8 }

9 BB3: {

10 x3 = 3

11 Jump to BB4

12 }

13 BB4 { }

BB2

BB1

BB4

BB3

Figure 2.4: Control-graph and the parent-child relationships between basic blocks

Phi (φ) instructions

These are special instructions that are used to ‘merge’ registers defined in different basic blocks. A φ
instruction is used to choose the value of a particular variable depending on the execution path that the
program has taken at run-time. Often, programs change the value of a variable based on a condition.
Because in SSA a variable cannot be reassigned multiple times, a φ instruction is used instead to express the
fact that the value of the variable depends on the execution path.

On line 14 in listing 2.9 a φ instruction is used to merge the registers x2 and x3 into x4 . This means
that x4 has the value of either x2 or x3 , depending on which execution path was taken at run-time. The φ
instruction is necessary because BB2 and BB3 modify an outer variable, thus it is important for the compiler
to preserve the meaning of the original program without breaking the SSA property. If the path of execution
goes through BB2, then x4 is assigned the value of x2.

φ instructions are removed during register allocation, and the operands of the instruction are usually

11



Listing 2.8: A modified version of the simple Lua program

local x = 1 -- define a local variable x

if x > 0 then

x = 2 -- reassign the outer ‘x‘ to 2

else

x = 3 -- reassign the outer ‘x‘ to 3

end

Listing 2.9: SSA version of listing 2.8

1 BB1: {

2 x1 = 1

3 Jump to BB2 if x1 > 0 else jump to BB3

4 }

5 BB2: {

6 x2 = 2

7 Jump to BB4

8 }

9 BB3: {

10 x3 = 3

11 Jump to BB4

12 }

13 BB4 {

14 x4 = φ(x2, x3)

15 }

allocated to the same physical or virtual register.

Dominators

A block B2 is dominated by a block B1 if and only if all paths from B1 to some other block Bn must pass
through B2. Note that the definition also holds for Bn == B2. A dominator tree is a tree structure which
links basic blocks with their dominators. Dominator trees are used in order to check what variables are in
scope in a particular basic block. These can be found by traversing the dominator tree upwards towards the
root. Figure 2.5 shows the dominator links of the program from listing 2.8.

BB2

BB1

BB4

BB3

Figure 2.5: Dominator links

Note that in figure 2.5 there are no links between BB2 and BB4, or between BB2 and BB4, because the

12



dominator property does not hold. However, there is a link between BB1 and BB4 because all paths from
BB1 end in BB4: BB1 → BB2 → BB4 and BB1 → BB3 → BB4. Also, any variable that is defined in BB1

is in scope in all three blocks, due to the direct link between them in the dominator tree. However, variables
defined in either BB2 or BB3 are not in scope in BB4 because there is no edge between these blocks.

2.5 Related work

Although this project is implementation oriented, there are some articles and books which provided great
support during development.

The “Compilers Principles, Techniques, & Tools” book [13] provided a great introduction to compilers.
Chapter 6 was the most relevant, as it introduced the concept of intermediate representations, and the
different types of IR that a compiler might use.

The design of the interpreter was also influenced by the PUC-Rio Lua implementation [14], which was
used as a second reference when the language manual was unclear.

The interpreter built in this project is benchmarked against three different VMs: PUC-Rio Lua, LuaJIT,
and Luster.

2.5.1 PUC-Rio Lua

The PUC-Rio Lua VM is the most up to date implementation of the Lua language, and it is written in C.
The aim of this interpreter is to provide a small implementation, and a VM which performs well. Other goals
include portability, and embeddability [15].

Register-based bytecode

Version 5 of the VM introduced many changes to the bytecode and to the way table types are implemented.
In version 5, the VM moved from a stack-based virtual machine to a register-based one. The main benefit of
this change was that the emitted bytecode size was reduced. The new bytecode representation also improved
the running time of the VM.

Table array optimisation

In version 5, the developers of Lua also introduced an interesting optimisation for tables. Tables are associa-
tive arrays, where keys and values can be of any type. Lua does not have arrays, only tables. Arrays can be
‘emulated’ with integer keys. In earlier versions, tables were implemented as hash tables. This means that
even integers were looked-up using the hash table. However, the array optimisation changes the way tables
are represented. Tables now have two components: an array used for integer look-ups, and a hash map for
all the other types of look-ups. The look-up algorithm is straightforward, as the value of an integer attribute,
i, is fetched from array[i], if i is not out of bounds. In all other cases, including the out-of-bounds case,
the look-up is done through the hash map.

2.5.2 LuaJIT

LuaJIT is a tracing Just-in-Time (JIT) compiler for Lua [16]. A tracing JIT is a virtual machine that collects
traces of the most executed sequences of bytecode instructions. Once the trace is collected, the tracing
compiler translates the trace of instructions into machine code, e.g. x86-64 assembly. If the VM starts
executing a path for which the tracing compiler generated machine code, then the machine code is executed
instead of the bytecode instructions.

The first stage in the execution of a Lua source file is the compilation to bytecode. LuaJIT compiles Lua
into bytecode through the use of a simple compiler, which only performs a few optimisations [17]. This phase
is executed quickly, as most of the optimisations are done at run-time. The bytecode produced by LuaJIT is
not compatible with the bytecode produced by PUC-Rio Lua.

13



SSA IR

When the LuaJIT VM starts tracing frequently executed code, it collects bytecode instructions, and at the
same time translates them into SSA instructions. The JIT compiler uses this representation to emit machine
code. The LuaJIT VM performs many optimisations on the SSA trace [18], to ensure that the machine code
output is very efficient. The VM supports many architectures including: ARM, PowerPC, and x86.

Similarities to PUC-Rio Lua

The LuaJIT project reuses some of the data structures implemented by PUC-Rio Lua. Implementing garbage
collectors that perform well is a hard task, and the LuaJIT project focuses more on implementing a JIT
compiler. Thus, the project borrows the garbage collector implemented by PUC-Rio Lua, as it performs well,
and it is more specialised for Lua.

LuaJIT also performs the table array optimisation implemented in PUC-Rio Lua.

2.5.3 Luster

Luster is a Lua VM written entirely in Rust. The aim of the Luster project is to create a garbage collector
more suitable for language implementations, and apply it to implement a small dynamic language like Lua.
The implementation of Luster is based on the one of PUC-Rio Lua. This means that Luster also performs,
for instance, the table array optimisation [19].

‘Stackless’ style

In Luster, function calls are implemented in ‘stackless’ style. This means that calls are not implemented
recursively. Each Call instruction creates a new object, called a Sequence, which is passed back to the VM.
The Sequence structure has a method called step, which is used to execute the instructions of the function
one-by-one. The VM collects Sequences, and steps through them until they are consumed.

Luster performs a garbage collection in between calls to step, which the author describes as continuous
garbage collection. Other garbage collectors choose to have predefined points where they collect unused
objects [20].
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Chapter 3

Requirements

3.1 Functional requirements

� The Lua interpreter should support most features of Lua 5.3.

� All features should be implemented as described in the Lua language specification.

� Both the compiler, and the VM must be built in Rust.

� The interpreter should be able to run a few benchmarks provided by the luajit testing suite.

3.2 Non-functional requirements

� The virtual machine should perform well, and should execute benchmarks in a reasonable amount of
time.

� Both the compiler, and the VM should not use unsafe code, unless it is strictly necessary.
Using the unsafe keyword in Rust means that all the guaratees the language offers are turned off. This
means that the programmer must ensure that those safety guaratees are met.
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Chapter 4

Design

This chapter describes in detail the main components of the Lua interpreter.

4.1 General architecture

This project follows the general architecture of interpreters described in section 2.1. This means that there
are three major components: the lexing and parsing component, the compiler, and the virtual machine.
Figure 4.1 shows the high-level process of executing a Lua source file.

The compiler module

Lexer + Parser Compiler Virtual Machine

.lua file

AST bytecode

Figure 4.1: Architecture diagram of the process of executing a Lua file.

This project implements the Compiler and Virtual Machine components from figure 4.1. The lexer and
the parser were generated with a parser generator. Parser generators are libraries that take as input a list of
tokens and a grammar, and produce code that is able to generate ASTs from source files.

4.2 The compiler component

This component is responsible for transforming the AST into bytecode that can be understood by the virtual
machine. This process is shown in figure 4.2.

IR generator Bytecode generator
AST SSA IR Lua bytecode

Figure 4.2: Architecture diagram of the process of compiling the AST to bytecode.

Figure 4.2 is a more detailed version of the compiler component from figure 4.1.
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4.2.1 IR generator

The IR generator is a sub-component of the compiler module. It takes as input the parse tree of the file that
is being compiled, and produces an SSA IR. Figure 4.3 shows a UML diagram of the IR generator. In the
first stage, the LuaParseTree structure lexes and parses the Lua file, and produces a parse tree, which is
supplied to the IRGen structure. The responsiblity of the IRGen structure is to generate the IR of the input
AST.

1

pt

1

1

functions*

1

basic blocks*

1

instrs*

LuaParseTree

+ contents: String
+ node: Node

+ new(file: &str): LuaParseTree
+ from str(source: String): LuaParseTree

IRGen

- curr func: usize
- curr block: usize

+ to lua ir(): LuaIR
+ new(pt: &LuaParseTree): IRGen

IRFunc

- parent func: Option<usize>
- parent block: Option<usize>
- upvals: BTreeMap<&str, usize>
- provides: HashMap<usize, BTreeMap<usize, ProviderType>>
- reg count: usize
- param count: usize
- is vararg: bool

+ new(param count: usize, is vararg: bool): IRFunc

BasicBlock

- parents: Vec<usize>
- dominators: Vec<usize>
- non locals: BTreeMap<&str, Vec<usize>>
- locals: BTreeMap<&str, Vec<usize>>

+ set reg name(reg: usize, &str, is local decl: bool)
+ get reg(name: &str): Option<usize>
+ replace regs with(regs: &[usize], with: usize)
+ generate phis()

�enumeration�
Instr

ZeroArg(IROpcode)
OneArg(IROpcode, Arg)
TwoArg(IROpcode, Arg, Arg)
ThreeArg(IROpcode, Arg, Arg, Arg)
NArg(IROpcode, Vec<Arg>)

+ opcode(): IROpcode
+ replace regs with(regs: &[usize], with: usize)

�enumeration�
Arg

Nil
Table
Int(i64)
Float(f64)
Str(String)
Reg(usize)
Func(usize)
Some(usize)
Bool(bool)
Block(usize)
Upval(usize)
StackVal(usize)

�enumeration�
IROpcode

Mov
Add
...
Phi

�enumeration�
ProviderType

Reg(usize)
Upvalue(usize)

Figure 4.3: UML diagram showing the structure of the IR generator component.
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4.2.2 The SSA IR of the Lua compiler

Although the compiler does not perform any optimisations, using an SSA IR allows the compiler to be
extended in the future with a register allocation algorithm, and optmisations such as constant folding. The
intermediate representation of the Lua compiler consists of functions, basic blocks, and instructions. Each of
these components is part of the UML diagram from figure 4.3.

Functions

Functions, represented by the IRFunc entity, are used to model functions in Lua. A function contains an
ordered collection of basic blocks. In order to better understand what the different attributes of IRFunc are
used for, consider the following Lua snippet.

Listing 4.1: A Lua program which uses the concept of upvalues

global_a = 1 -- a global variable

local a = 1 -- a local variable

function global_f(b) -- a global function

print(c) -- prints nil, and not 2!

return a + global_a + b

end

local c = 2

print(global_f(3)) -- prints 5

The Lua language uses lexical scoping, which means that a variable is in scope if it was defined in the
current, or parent scopes. To better illustrate this concept, consider the function global f from listing 4.1.
It takes a parameter b, and returns the sum of a, which is declared in the outer scope before the function,
global a, and the paramter b. An upvalue in Lua is a local variable defined in an outer scope that is read
or modified by a function from an inner scope. In the case of global f, a is an upvalue because it is local,
it is defined in an outer scope, and it is read by global f. However, c is not an upvalue, because it is not
defined before global f. Thus, c, in this case, is a global variable. After the definition of global f, there is
a declaration of a new local variable c, although when processing global f there is no local c in scope. The
global f function is also a global symbol.

Every function and module in Lua has an upvalue called ENV. This upvalue is a table which stores all
global symbols. For instance x = 1 is equivalent to setting the "x" attribute of ENV to 1. Thus, x = 1 is
equivalent to ENV["x"] = 1. In Lua, if a symbol is not declared in an outer scope, then it is fetched from
the ENV upvalue.

Listing 4.2: Another Lua program which uses the concept of upvalues.

local function f(n)

if n <= 0 then

return 0

else

return f(n - 1)

end

end

Lua also has the concept of local functions. These are functions which can have themselves as an upvalue.
For example, in listing 4.2 the upvalues of f are ENV and f. A more verbose version of function f can be
seen in listing 4.3.

The upvals attribute of the IRFunc entity models the upvalues of a function. It is a mapping from names
to indices. For instance in the case of function f from listing 4.2, the upvalues map has the values: { ”f”→ 0
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Listing 4.3: An equivalent program to the one in listing 4.2.

local f;

f = function(n)

if n <= 0 then

return 0

else

return f(n - 1)

end

end

}. ENV is not included in the mapping as an optimization. The index of 0 means that f is the first upvalue
of the function, after ENV .

Every function knows what upvalues it uses, however it is also very imporant to record what variables
each function ‘provides’ to other functions as upvalues. More details about the provides attribute are given
in chapter 5.

A function can have another function as a parent. In listing 4.2, function f has the top-level module as
a parent. In this project, the top-level module is modelled as a function. In Lua, source files are also called
modules or chunks.

Basic block

The BasicBlock entity follows the definition of basic blocks given in chapter 2. The methods defined by
BasicBlocks are described in chapter 5. The non locals and locals attributes define mappings between
high-level variable names and registers of the IR. The locals attribute holds all the variables that have been
declared as local in the basic block, and the non-locals mapping holds the outer local variables that the
basic block modified.

Instr

Instructions are modelled as ‘meta-instructions’. Each type of instruction is defined by an IROpcode, and
its operands. Instructions are represented this way in order to perform lowering to bytecode more efficiently.
The Arg enumeration is used to specify the type of an operand. The Some variant of Arg is a special operand,
which does not name any type. The reason for its existence is explained in a later section.

IROpcode

This enumeration defines all the instructions supported by the IR. Table 4.1 gives a detailed description of
the meaning of each opcode. Arg(n) refers to the nth operand. RegA, RegB , RegC are placeholders for
specific registers that are encoded in an instruction. 〈OP 〉 is a placeholder for a binary operation supported
by the compiler, such as: add, sub, equals, less than, etc.

4.2.3 IR generation with IRGen

The main task of the IRGen structure is to create an intermediate representation of the input Lua program.
The lexer and parser generate a parse tree, which is then recursively traversed by IRGen in order to create a
LuaIR structure, which can later be translated into bytecode.

The compiler does not support all the operations defined in the Lua reference manual. However, this
section also describes possible solutions for the missing functionality. The following sections describe in
detail how different constructs of the Lua language are translated into LuaIR.
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Mov RA = RB

〈OP 〉 RA = RB 〈OP 〉 RC

GetAttr RA = RB [RC ]
SetAttr RA[RB ] = RC

Closure RA = Closure(Arg(2))
Call Call closure RA

Push Push RA to the stack
VarArg Copy the Arg(2)th vararg parameter into RA

MovR Copy the Arg(2)th return value of the previous call into RA

Rer Return to the parent function
SetTop Mark the stack frame boundary of closure RA

GetUpAttr RA = Upvals[Arg(2)][RC ]
SetUpAttr Upvals[Arg(1)][RB ] = RC

Jmp Jump to block Arg(1)
JmpNe If RA == true then jump to block Arg(2) else jump to Arg(3)
JmpEq Opposite of JmpNe
GetUpVal RA = Upvals[Arg(2)]
SetUpVal Upvals[Arg(1)] = RB

Umn RA = −RB

Phi A φ instruction

Table 4.1: The opcodes of the IR explained in detail.

Lua blocks

Blocks in Lua are sequences of instructions, and can optionally return values. Usually, each Lua block is
compiled into a BasicBlock. However, there are cases in which multiple BasicBlocks are needed to represent
a single Lua block. The reason why blocks can optionally return values is because the body of a function is
represented as a block.

Variable assignments

In the Lua language there are two types of variables: local, and global. The language also supports multiple
assignments in one statement such as a, b = 1, 2. In the IR, each variable assignment is stored in a new
register.

Listing 4.4: Local assignments in Lua.

local a, b = 1, 2

a, b = 3, 4

Listing 4.5: The SSA IR of listing 4.4.

1 BasicBlock1 {

2 Mov Reg(0), Int(1) # Copy 1 into register 0

3 Mov Reg(1), Int(2) # Copy 2 into register 1

4 Mov Reg(2), Int(3) # Copy 3 into register 2

5 Mov Reg(3), Int(4) # Copy 4 into register 3

6 Phi Reg(0), Reg(2) # merge registers of a

7 Phi Reg(1), Reg(3) # merge registers of b

8 }
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The non-locals attribute of BasicBlock1 from listing 4.5 contains an empty map because the block does
not modify any outer local variable. However, during the compilation of BasicBlock1, the locals attribute
contains the following mappings: ”a” → [0, 2]; ”b” → [1, 3]. When the compiler fully processes a block, it
calls the generate phis method of BasicBlock. This method is used to merge the different uses of a symbol
into a single register. In this case, the compiler merges the registers of ‘a’ into register 0, and registers of ‘b’
into 1. The reason why the compiler emits Phis to merge local variables from the same block is described in
chapter 5.

Tables and ENV

In order to better understand how global variables work, it is necessary to introduce tables, and how the
compiler translates them into IR.

Listing 4.6: Local table in Lua.

local t = {}

t[1] = 2

t["string"] = 3

Listing 4.7: The SSA IR of listing 4.6.

1 BasicBlock1 {

2 Mov Reg(0), Table # Create the table t in register 0

3 Mov Reg(1), Int(2) # process the value

4 Mov Reg(2), Int(1) # process the key

5 SetAttr Reg(0), Reg(2), Reg(1) # perform t[1] = 2

6 Mov Reg(3), Int(3)

7 Mov Reg(4), Str(string)

8 SetAttr Reg(0), Reg(4), Reg(3) # perform t["string"] = 3

9 }

Listings 4.6 and 4.7 show how tables are compiled to IR. Note that both 1 and "string" are keys of
the table t. In order to compile table look-ups, IRGen first recursively compiles the right-hand-side of the
expression, and then recursively compiles the left-hand-side. Having compiled both sides, the compiler can
now emit the correct instructions to assign the right-hand-side to the left-hand-side.

As mentioned earlier, the ENV variable is a table which is always the first upvalue of any function. The
compiler considers a Lua module as a function.

Listing 4.8: Global assignment in Lua.

x = 1 -- _ENV["x"] = 1

In listing 4.8, x is a global variable, thus the attribute "x" of ENV is assigned the value of 1. Listing 4.9
shows the main use case of the Upvalue variant of the Arg enumeration. The compiler emits a SetUpAttr

instruction for upvalue 0, which is ENV, in order to store the new value of x.

Binary expressions

Each binary operation of the Lua language has an associated IROpcode. The compiler handles most binary
expressions in the same way, except for and and or. Binary expressions are translated recursively. First the
compiler generates code for the left operand, and stores it into a register, then it does the same for the right
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Listing 4.9: The SSA IR of listing 4.8.

1 IRFunction1 {

2 BasicBlock1 {

3 Mov Reg(0), Int(1)

4 SetUpAttr Upvalue(0), Str("x"), Reg(0) # _ENV["x"] = 1

5 }

6 }

operand. Finally, the compiler emits an instruction, which represents the binary operation. The arguments of
this instruction are the two registers that contain the values of the two operands. To illustrate this, consider
the program from listing 4.10, and its associated IR from listing 4.11.

Listing 4.10: A binary operation example.

local x = 1 + 2

Listing 4.11: The SSA IR of listing 4.10

BasicBlock1 {

Mov Reg(0), Int(1) # left operand

Mov Reg(1), Int(2) # right operand

Add Reg(2), Reg(0), Reg(1) # Reg(2) = Reg(0) + Reg(1)

}

It is also worth mentioning that the locals attribute of BasicBlock1 from listing 4.11 contains a mapping
from x to register 2. This is a small optimisation done by the compiler in order to avoid emitting an extra
Mov instruction.

OR short-circuiting

The Lua compiler performs or short-circuiting, which means that given an or expression, if the left operand
is true, then the right operand is not evaluated. The compiler performs this optimisation by emitting multiple
basic blocks, and branching instructions.

Listing 4.12: An or operation example.

local x = 1 or 2

Each operand of the or operation is compiled in its own basic block as shown in listing 4.13. The compiler
emits a branching instruction, JmpEq, in BasicBlock1 in order to check the truth value of the left operand
expression. If it is true, then the VM is instructed to jump to BasicBlock3. If is it false, then the VM jumps
to BasicBlock2, where it computes the truth value of the right operand. After the or expression is executed,
the VM resumes the execution in BasicBlock3. Note that the locals attribute in both BasicBlock1 and
BasicBlock3 contains an entry for x, while BasicBlock2 does not.

AND short-circuiting

The and operator is compiled very similarly to the or operator. The main difference between the two is that
if the left operand of the and operation evaluates to a false value, then the right operand is not evaluated.
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Listing 4.13: The SSA IR of listing 4.12.

# locals = { ’x’ -> [0] }

BasicBlock1 {

Mov Reg(0), Int(1)

JmpEq Reg(0), Block(2), Block(3)

}

# non-locals = { ’x’ -> [1] }

BasicBlock2 {

Mov Reg(1), Int(2)

Jmp Block(3)

}

# locals = { ’x’ -> [0] }

BasicBlock3 {

Phi Reg(0), Reg(1)

}

Listing 4.14: An and operation example.

local x = 1 and 2

Listing 4.15: The SSA IR of listing 4.14.

# locals = { ’x’ -> [0] }

BasicBlock1 {

Mov Reg(0), Int(1)

JmpNe Reg(0), Block(2), Block(3)

}

# non-locals = { ’x’ -> [1] }

BasicBlock2 {

Mov Reg(1), Int(2)

Jmp Block(3)

}

# locals = { ’x’ -> [0] }

BasicBlock3 {

Phi Reg(0), Reg(1)

}

Another notable difference between the two operations, is that the compiler emits a JmpNe in the case of
and instead of a JmpEq instruction as seen in listing 4.15.

Unary operators

The compiler only supports the - unary operator. Because - only has one argument, the compiler simply
evaluates it, and stores the negation of its value in a new register. Other unary operators work similarly, and
the compiler can be easily extend to support them.

If statements

Conditionals are an essential construct in any language. The compiler, as with many other constructs, emits
several basic blocks in order to translate an if statement into LuaIR.

In listing 4.17, BasicBlock1 is the block in which if cond a from listing 4.16 is compiled. If the condition
is true, then the VM jumps to BasicBlock2 where a is set to 2. In BasicBlock2, the Jmp instruction is used
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Listing 4.16: An if statement in Lua.

local cond_a = true

local cond_b = false

local a = 1

if cond_a then

a = 2

elseif cond_b then

a = 3

else

a = 4

end

Listing 4.17: The SSA IR of listing 4.16.

# locals: { ’a’ -> [2] }

BasicBlock1 {

Mov Reg(0), Bool(true) # cond_a = true

Mov Reg(1), Bool(false) # cond_b = false

Mov Reg(2), Int(1) # local a = 1

JmpNe Reg(0), Block(2), Block(3) # if cond_a ...

}

# non-locals: { ’a’ -> [3] }

BasicBlock2 {

Mov Reg(3), Int(2) # a = 2

Jmp Block(6)

}

BasicBlock3 {

JmpNe Reg(1), Block(4), Block(5) # if cond_b ...

}

# non-locals: { ’a’ -> [4] }

BasicBlock4 {

Mov Reg(4), Int(3) # a = 3

Jmp Block(6)

}

# non-locals: { ’a’ -> [5] }

BasicBlock5 {

Mov Reg(5), Int(4) # a = 4

Jmp Block(6)

}

# locals: { ’a’ -> [2] }

BasicBlock6 {

Phi Reg(2), Reg(3), Reg(4), Reg(5)

}

to jump over the basic blocks which represent the other branches of the if statement. BasicBlock3 contains
the instructions which check whether cond b is true or not. BasicBlock6 contains a Phi instruction which
merges all the uses of a into a single register. This is necessary because all the blocks modify the value of a.
Listing 4.17 also specifies which basic blocks have their non-locals attribute set. In the case of BasicBlock
2, 4, and 5, a is a non-local because a was declared in an outer block, but reassigned in the current block.
This attribute helps the compiler emit Phi instructions. Also note that that a is local in BasicBlock6. The
reasoning behind it is that BasicBlock6 is the continuation of BasicBlock1, in which a is a local, therefore
a should remain a local variable even in BasicBlock6. It is also worth mentioning that the parent basic
blocks of BasicBlock6 are BasicBlock 2, 4, and 5. This is because the Jmp instruction defines a parent-child
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relationship between two basic blocks. BasicBlock1 is also the dominator of BasicBlock6, because all paths
that start in BasicBlock1 end in BasicBlock6.

While loops

While loops are compiled similarly to if statements. This is the first construct which introduces cycles in the
control-flow graph.

Listing 4.18: A while statement in Lua.

local i = 0

while i < 10 do

i = i + 1

end

Listing 4.19: The SSA IR of listing 4.18.

# locals: { ’i’ -> [0] }

BasicBlock1 {

Mov Reg(0), Int(0) # local i = 0

Jmp Block(2)

}

BasicBlock2 {

Mov Reg(1), Int(10)

Lt Reg(2), Reg(0), Reg(1) # R(2) = i < 10

JmpNe, Reg(2), Block(3), Block(4)

}

# non-locals: { ’i’ -> [4] }

BasicBlock3 {

Mov Reg(3), Int(1)

Add Reg(4), Reg(0), Reg(3) # i = i + 1

Jmp Block(2) # jump back to recheck the while condition

}

# locals: { ’i’ -> [0] }

# dominators: [1]

# parents: [2]

BasicBlock4 {

Phi Reg(0), Reg(4)

}

While loops have a condition, and execute the body until the condition becomes false. In order to model
this, the compiler emits 3 different basic blocks as shown in listing 4.19. The first basic block, BasicBlock2,
is the basic block in which the truth value of the condition is checked. If the condition is true, then execution
moves to BasicBlock3, or to BasicBlock4 otherwise. BasicBlock3 is the body of the while-loop. This
contains a Jmp instruction to BasicBlock2 which rechecks the truth value of the condition. BasicBlock4

contains a Phi instruction which merges the two uses of a into register 0. Just like in the case of the if

construct, BasicBlock4 has BasicBlock1 as a dominator for the same reasoning: all paths from BasicBlock1

end up in BasicBlock4. BasicBlock2 is a dominator of BasicBlock4, however the compiler does not create
a dominator link for optimisation purposes. This is because BasicBlock2 does not modify any variables, as
such there is no need to link it to BasicBlock4.

Do blocks

The do..end construct is used to create a new scope in Lua.
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Listing 4.20: A do block in Lua.

local i = 0

do

i = 1

local i = 2

end

-- i == 1

Listing 4.21: The SSA IR of listing 4.20.

# locals = { ’i’ -> [0] }

BasicBlock1 {

Mov Reg(0), Int(0)

}

# locals = { ’i’ -> [2] }

# non-locals = { ’i’ -> [1] }

BasicBlock2 {

Mov Reg(1), Int(1) # i = 1

Mov Reg(2), Int(2) # local i = 2

}

# locals = { ’i’ -> [0] }

# dominators: [1]

# parents: [2]

BasicBlock3 {

Phi Reg(0), Reg(1)

}

In listing 4.21, the compiler emits a new basic block, where it adds the instructions of the do block.
BasicBlock2 modifies both local variables and non-local ones, thus the locals and non-locals attributes
both contain an entry for i. Note that if a block does not end with a jump instruction, then it is assumed
that it jumps to the next basic block. In this case, BasicBlock1 jumps to BasicBlock2.

For loops

There are two types of for loops in Lua. The first kind, the counter based for loop, is a loop which executes
its body a number of times.

Listing 4.22: A for statement in Lua.

1 local j = 0

2 for i=0,10,1 do -- equivalent to ‘for i=0,10 do‘

3 j = j + 1

4 end

5 -- j has the value of 11

The for loop from listing 4.22 executes 11 times. The i variable is the counter, and has an initial value of
0. The third integer from line 2 represents the step of the loop. At each iteration, the counter is incremented
step times. The loop stops when the value of i is greater than 10, which is called the bound. The step must
be an integer or float value, and can also be negative. When the step has a negative value, the bound is
treated as a lower bound. It is also important to note that i is a local variable, which goes out of scope after
the for loop. This means that only the body of the loop is able to use the value of i.
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Listing 4.23: A for statement with a negative step.

local j = 0

for i=0,-10,-1 do

j = j + 1

end

-- j has the value of 11

The compiler handles for loops by translating them into while loops. The program from listing 4.22 is
translated into the program from listing 4.24. The IR for listing 4.24 is omitted for the sake of brevity. The
main point is that the compiler reuses existing functionality in order to generate for loops.

Listing 4.24: A for statement in Lua

1 local j = 0

2 do

3 local i, bound, step = 0, 10, 1

4 while (step >=0 and i <= bound) or (step < 0 and i >= bound) do

5 j = j + 1

6 i = i + step

7 end

8 end

9 -- j has the value of 11

The other type of for loop is the iterator for loop. The compiler does not handle these, but they can
also be translated into a while-based construct such as the counter-based type.

Function definitions

Function definitions are also considered expressions in Lua. This means that definitions can be assigned to
variables, and also returned from functions.

The compiler creates a IRFunc for each function definition it encounters. The parent block and parent func

attributes are used to denote the parent function and basic block in which the definition was compiled in.
This piece of information is important for upvalues generation, which is described in chapter 5.

Listing 4.25: A simple function with two return values.

local function f(a, b)

return a + b, a - b

end

Function f from listing 4.25 is a local function, which takes two parameters, and returns two values. The
compiler places the arguments of a function into the first N registers, where N is the number of parameters.
In this case, a is stored in register 0, and b in register 1. In this case, f returns two values. The VM
expects return values to be placed on the stack when the function returns. The compiler generates IR show
in listing 4.26 for all values that are returned, and pushes them to the stack. The second operand of the
Push instruction is a special operand which is described in chapter 5. The Ret instruction marks the end
of a function call, and instructs the VM to continue the execution of the caller (the parent function). The
parent func attribute of IRFunction2 is set to 1, and parent block also to 1. This is because the definition
of f is compiled in BasicBlock1 of IRFunction1. The Closure instruction is used to create a closure value
in the VM out of a function index. The closure is stored in register 1, and its associated function is
IRFunction2. The parameters of a function are always considered local variables.
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Listing 4.26: The SSA IR of listing 4.25.

IRFunction1 {

BasicBlock1 {

Mov Reg(0), Nil

Closure Reg(1), Func(2)

Phi Reg(0), Reg(1)

}

}

IRFunction2 {

# locals = { ’a’ -> [0], ’b’ -> [1] }

BasicBlock1 {

Add Reg(2), Reg(0), Reg(1)

Push Reg(2), Some(1)

Sub Reg(3), Reg(0), Reg(1)

Push Reg(3), Some(1)

Ret

}

}

Function calls

In Lua, functions can be called in a similar way as it is done in other programming languages.

Listing 4.27: Calling a simple function with two return values.

local function f(a, b)

return a + b, a - b

end

local x, y = f(1, 2)

Listing 4.28: The SSA IR of listing 4.27.

1 BasicBlock1 {

2 Mov Reg(0), Nil # local f = nil

3 Closure Reg(1), Func(1) # f = function(a,b) ...

4 SetTop Reg(1)

5 Mov Reg(2), Int(1)

6 Push Reg(2)

7 Mov Reg(3), Int(2)

8 Push Reg(3)

9 Call Reg(1) # f(1, 2)

10 MovR Reg(4), StackVal(0) # copy first return value from the stack into register 4

11 MovR Reg(5), StackVal(1)

12 Phi Reg(0), Reg(1)

13 }

For the sake of brevity, listing 4.28 only shows the basic blocks of the module. The code for function f

can be found in listing 4.26. When the compiler translates a function call, first it compiles each argument of
the call (lines 5, 7) and pushes them to the stack (lines 6, 8), then it emits a Call instruction to the function,
and copies the return values of the call (lines 10-11). The compiler performs an unpacking operation on lines
10-11, which means that the values returned by f are copied into x and y. The SetTop instruction from
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line 4 marks the start of a function call. This instruction is used to solve the issue of ‘nested’ stack frames.
However, the details of this issue, and about unpacking are described in chapter 5.

4.2.4 Bytecode generation

Once the compiler generates the IR, it moves to bytecode generation. This is done through the use of the
BcGen structure, which generates bytecode from Lua IR.

1

*

1

ir

1

1

const map1

1

funcions*

LuaIR

- main func: usize

+ substitute phis()

IRFunc

...

BcGen

- branches: Vec〈(usize, usize)〉
- blocks: HashMap〈usize, usize〉

+ compile(): LuaBytecode

ConstantsMap

- int map: HashMap〈i64, usize〉
- float map: HashMap〈String, usize〉
- str map: HashMap〈String, usize〉

LuaBytecode

- ints: Vec〈i64〉
- floats: Vec〈f64〉
- strings: Vec〈String〉
- main function: usize

+ serialize to file(file: &str): Result〈()〉
+ get int(i: i64): usize
...

�enumeration�
BCProviderType

Reg(u8)
Upval(u8)

BcFunc

- index: usize
- reg count: usize
- param count: usize
- upvals count: usize
- provides: HashMap〈u8, Vec〈(BCProviderType, u8)〉〉
- instrs: Vec〈u32〉

...

Figure 4.4: UML diagram showing the structure of the bytecode generator component.

The ConstantsMap entity, from figure 4.4 is a collection of all the constant values that are found in a source
file. The BcGen structure compiles each IRFunc into a BcFunc. BcFuncs are the bytecode representation of
IRFuncs. The other entities will be described in more detail in chapter 5.
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4.2.5 Bytecode format

The instruction set of the bytecode produced by the compiler is different than the one produced by the
PUC-Rio Lua compiler.

The format of the bytecode can be thought of as a compact representation of the IR, although bytecode
instructions do not follow SSA rules. The ints, floats, and strings attributes are extracted from the
ConstantsMap. Their main use will be highlighted in chapter 5. The main function attribute represents
the function which denotes the entry point of the program.

The instrs attribute of BcFunc represents all the instructions of the BcFunc. Note that each instruction
is a u32, which means that an instruction is 32 bits long. The other attributes of BcFunc are described in
chapter 5.

Instruction encoding

This encoding was inspired by the PUC-Rio Lua implementation [14]. An instruction has 4 main parts: the
opcode, and 3 operands. Figure 4.5 shows a visual representation of an instruction.

032

Operand 3

24

Operand 2

16

Operand 1

8

Opcode

Figure 4.5: The format of a bytecode instruction.

Each operand of an instruction is 8 bits long, which means there are certain restrictions which the VM
imposes. For instance, if one of the operands is a register number, then it means that the operand can
encode at most 256 registers. The compiler must translate programs which can have an unlimited number
of variables into a representation which can only address 256 ‘variables’.

4.3 The virtual machine

The virtual machine is the last component of the Lua interpreter. It takes as input the bytecode produced
by the compiler component, and interprets its instructions.
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1

*

Vm

+ bytecode: LuaBytecode
+ registers: Vec〈LuaVal〉
+ stack: Vec〈LuaVal〉
+ top: usize
+ curr frame: usize
+ env: LuaVal
+ pc: usize

+ fn closure(): &LuaVal
+ fn eval(): Result〈(), LuaError〉
+ fn push(val: LuaVal)

�enumeration�
LuaVal

Nil
Bool(bool)
Int(i64)
Float(f64)
Str(String)
Table(LuaTable)
Closure(LuaClosure)

+ add(o: LuaVal): Result〈...〉
+ call(): Result〈(), LuaError〉
+ set attr(attr:LuaVal, val: LuaVal): ...
...

StackFrame

+ closure: LuaVal
+ start: usize

�enumeration�
LuaError

GetAttrErr
SetAttrErr
IntConversionErr
FloatConversionErr
StringConversionErr
NotAClosure
Error(String)

Figure 4.6: UML diagram of the virtual machine component.

The Vm entity, from figure 4.6 is the main entry point of the interpreter. When it is created, the VM
initialises its environment and attributes in order to be able to execute the instructions of the bytecode.
The eval function starts the interpreter. Other methods, such as closure and push are solely used for
convenience.

The LuaVal entity represents the type system of the virtual machine. Note that this entity is an abstract
representation of the type system. The type system defines many operations between LuaVals. However, for
the sake of brevity, not all of them are included in the diagram. If at any point, there is a mismatch between
the expected type of a LuaVal, and its actual type, then the system raises a LuaError.

The LuaError entity models the different types of errors that can occur during interpretation. The Vm

checks if each instruction executes successfully. If at any point an error occurs, the Vm stops the execution of
the bytecode, and reports the error to the user.

The StackFrame entity models the call-stack of the virtual machine. The details of this entity will be
described in more detail in chapter 5.
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Chapter 5

Implementation

This chapter describes in detail how the design from chapter 4 is implemented in Rust. Section 5.1 describes
the implementation of the Lua compiler crate1, and section 5.2 the details of the virtual machine.

5.1 The luacompiler crate

The luacompiler crate is a library which can generate Lua bytecode2 from a Lua source file.
As described in chapter 4, the first stage of compilation involves lexing and parsing the input file. In

this project, the lexer is generated using the lrlex3 crate, and the parser using lrpar4. The compiler uses
the aforementioned crates in order to generate an efficient parser for the Lua language. The implementation
of the LuaParseTree structure (figure 4.3) is straightforward. The new method loads the source file into
memory, and generates a parse tree using the lrlex and lrpar crates. Once the AST is created, its root
node is saved into LuaParseTree along with the contents of the source file.

5.1.1 The irgen module

This module facilitates the creation of the Lua IR. The compile to ir function is the main entry point of
this module. It takes a LuaParseTree as input, and returns a LuaIR structure. This function creates a new
IRGen compiler, which receives as input the parse tree. As soon as the compilation is done, the function
retrieves the IR from the compiler, and returns it to the caller.

The IRGen compiler has a simple design. Each of its methods generates code for a symbol from the
grammar. For example, compile funcbody is called on non-terminals which represent a function definition.

When a new IRGen structure is created, it immediately creates an IRFunc for the module. This can be
seen in listing 5.1. The module does not take any parameters, and is not a vararg function, thus (0, false)

are passed as arguments to the new function of IRFunc.
The compiler defines a few useful methods such as curr func and curr block which return a reference

to the function, or block, that is being compiled. Whenever the compiler emits instructions, it adds them
to the current basic block of the current function. In order to emit instructions in a different block, the
compiler must change its curr block attribute to another value. When compiling branching statements, this
attribute is changed in order for the compiler to emit instructions in the correct blocks.

Indices instead of references

The parents, dominators, functions attributes all use indices instead of references. This is because Rust
imposes a few restrictions on references, which are hard to meet in the current design. For example a
BasicBlock knows the blocks that dominate it, but cannot access their internals, because the structure only

1A crate is a Rust project.
2Incompatible with PUC-Rio Lua bytecode.
3https://crates.io/crates/lrlex
4https://crates.io/crates/lrpar
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Listing 5.1: IRGen::new, and IRFunc::new.

1 impl IRFunc {

2 pub fn new(param_count: usize, is_vararg: bool) -> IRFunc {

3 IRFunc {

4 parent_func: None, parent_block: None,

5 upvals: BTreeMap::new(), provides: HashMap::new(),

6 reg_count: 0, param_count,

7 basic_blocks: vec![], is_vararg,

8 }

9 }

10 ...

11 }

12

13 impl IRGen {

14 fn new(pt: &LuaParseTree) -> IRGen {

15 let functions = vec![IRFunc::new(0, false)];

16 IRGen {

17 pt, functions, curr_func: 0, curr_block: 0,

18 }

19 }

20 ...

21 }

stores the index of the dominators, and not a reference to them. The compiler has access to all blocks, and
can look up a basic block in constant time using an index, just like with references.

The compile expr method

This method is used to compile an expression in Lua. This is the most important method as it is used by
nearly every other method. It takes as input a node which represents an expression, and returns the number
of the virtual register in which the result is stored.

Literals, such as numbers, or strings are considered expressions in Lua. Listing 5.2 shows the details
of how literals are compiled into Lua IR. All literals are compiled as follows: the compiler determines the
type of the literal, generates a new register in the current function with get new reg(), and it creates a Mov

instruction, which copies the literal into the newly generated register.
Unary and binary expressions are compiled as described in chapter 4, and are not explained in more detail

as their implementation is straightforward.
Expression can also contain variables. This case is handled by the find name method, which is shown in

listing 5.3.
There are three types of symbols: locals, upvalues, and globals. The find name method first checks to

see if name is a local variable. This is done by calling the get reg method (line 3), which optionally returns
the register which contains the current value of a symbol. Listing 5.4 shows the definition of the get reg

method.
The get reg algorithm first checks if the symbol is defined in the current block (line 22). If it is, then

the register of the symbol is returned (line 24). In SSA, in order to find a local variable, it is necessary to
traverse the dominator tree upwards towards the root. If the variable is not found in the current block, then
the algorithm recursively searches the dominators of the first block in order to find the symbol (lines 27-32).

If get reg returns None, then the variable must be either an upvalue, or a global symbol. An upvalue is
a local variable that is not defined in the current function, but in an enclosing function. This search is done
by the get upval method of IRGen.

The get upval method, shown in listing 5.5 returns the index of the symbol in the upvalues attribute of
a IRFunc. The upvalue algorithm first checks to see if the current function already defines the symbol as an
upvalue (lines 4-6). If the current function does not define it, then the algorithm moves to the parent function
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Listing 5.2: A snippet from compile expr for literals.

1 impl IRGen {

2 fn compile_expr(&mut self, node: &Node<u8>) -> usize {

3 // what type of node is it?

4 match *node {

5 ...

6 Term { lexeme } => {

7 // get the value of the node: "x", "1", etc.

8 let value = self.pt

9 .get_string(lexeme.start(), lexeme.end().unwrap_or(lexeme.start()));

10 // what type of terminal is it?

11 match lexeme.tok_id() {

12 lua5_3_l::T_NUMERAL => {

13 let new_reg = self.curr_func().get_new_reg();

14 let arg = if value.contains(".") {

15 Arg::Float(value.parse().unwrap())

16 } else {

17 Arg::Int(value.parse().unwrap())

18 };

19 self.instrs().push(Instr::TwoArg(Mov, Arg::Reg(new_reg), arg));

20 new_reg

21 }

22 lua5_3_l::T_SHORT_STR => {

23 let new_reg = self.curr_func().get_new_reg();

24 self.instrs().push(Instr::TwoArg(Mov, Arg::Reg(new_reg),

25 Arg::Str(value[1..(value.len() - 1)].to_string()),

26 ));

27 new_reg

28 }

29 lua5_3_l::T_FALSE => {

30 let new_reg = self.curr_func().get_new_reg();

31 self.instrs().push(Instr::TwoArg(Mov, Arg::Reg(new_reg), Arg::Bool(false)));

32 new_reg

33 }

34 ...

35 }

36 }

37 }

38 }

39 }
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Listing 5.3: The find name method.

1 impl IRGen {

2 fn find_name(&mut self, name: &str) -> usize {

3 match self.get_reg(name) {

4 // does the current function define a mapping for ’name’?

5 Some(reg) => reg,

6 // check to see if any parent functions or blocks contain this variable

7 None => {

8 let reg = self.curr_func().get_new_reg();

9 if let Some(upval_idx) = self.get_upval(name) {

10 self.instrs().push(Instr::TwoArg(GetUpVal,

11 // + 1 because _ENV is the first upvalue

12 Arg::Reg(reg), Arg::Upval(upval_idx + 1)))

13 } else {

14 self.instrs().push(Instr::ThreeArg(GetUpAttr,

15 Arg::Reg(reg), Arg::Upval(0), // Upval 0 is _ENV

16 Arg::Str(name.to_string())));

17 }

18 reg

19 }

20 }

21 }

22 }

(line 7). Note that the search in the parent function starts from the block in which the current function is
defined, i.e. parent block. The while loop (lines 10-26) tries to find the upvalue in all of the ancestors of
the current function. If the symbol is not found, then the algorithm returns None. When the algorithm finds
the upvalue in a parent function, P, it marks the symbol as an upvalue for the current function (line 13), and
pushes a provider to P. On lines 14-18, the reg register from function P is marked as the value that is passed
as upvalue with index upvalue idx to the current function.

In listing 5.3, if get upval returns an index, then a GetUpVal instruction is emitted in order to load that
particular upvalue into a register. The register in which the upvalue is loaded is returned to the caller of
find name.

If the symbol is not an upvalue, then the compiler emits a GetUpAttr instruction in order to load the
symbol from ENV, which is always the first upvalue of any function.

The compile funcbody method

Function definitions are also considered expressions in Lua. When compile expr needs to compile a function
definition, it calls the compile funcbody method.

Listing 5.6 shows how the compiler translates function definitions. First, the algorithm creates a new
IRFunc in the current block (lines 4-7), and populates the new function with a new empty basic block
(line 9). As described in chapter 4, the parameters of a function are placed in the first N registers. The
compile param list method (line 11) loops through each parameter of the function, assigns a register to
it, and declares it as local in the first basic block of the new function. After that, on line 12, the body of
the function is compiled. Once the compilation finishes, the compiler restarts the compilation process of the
function in which the definition was found. Last, but not least, the algorithm creates a new register, and
creates a Closure out of the index of the child function. The Closure is placed into the newly generated
register.

Before returning the closure, the algorithm performs an upvalue propagation. Consider the Lua code
from listing 5.7.

It demonstrates an important edge case of upvalues. The only upvalue of g is a5. Function f does not

5Not considering ENV for simplicity.
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Listing 5.4: The get reg method.

1 impl BasicBlock {

2 pub fn get_reg(&self, name: &’a str) -> Option<usize> {

3 // check to see if ‘name‘ is a local variable

4 let res = self.locals.get(name);

5 if res.is_some() {

6 return res.map(|v| *v.last().unwrap());

7 }

8 // check to see if the block modified ‘name‘ or not

9 self.non_locals.get(name).map(|v| *v.last().unwrap())

10 }

11 }

12

13 impl IRGen {

14 fn get_reg(&self, name: &str) -> Option<usize> {

15 self.get_reg_from_block(name, self.curr_func, self.curr_block)

16 }

17

18 fn get_reg_from_block(&self, name: &str, func: usize, bb: usize) -> Option<usize> {

19 let curr_func = &self.functions[func];

20 let curr_block = curr_func.get_block(bb);

21 // is ‘name‘ defined in the current block?

22 let res = curr_block.get_reg(name);

23 if res.is_some() {

24 return res;

25 }

26 // if ‘name‘ wasn’t found, then try to find it in the dominators

27 for &d in curr_block.dominators() {

28 let res = self.get_reg_from_block(name, func, d);

29 if res.is_some() {

30 return res;

31 }

32 }

33 // this function does not have a register for ‘name‘

34 None

35 }

36 }
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Listing 5.5: The get upval method.

1 impl IRGen {

2 fn get_upval(&mut self, name: &str) -> Option<usize> {

3 // does the current function define the upvalue already?

4 if let Some(&upval_idx) = self.curr_func().upvals().get(name) {

5 return Some(upval_idx);

6 }

7 let mut func = self.curr_func().parent_func();

8 let mut block = self.curr_func().parent_block();

9 // go through all the parents, and check if we can find <name>

10 while func.is_some() {

11 // found <name>, so we can create a new upvalue

12 if let Some(reg) = self.get_reg_from_block(name, func.unwrap(), block.unwrap()) {

13 let upval_idx = self.curr_func().push_upval(name);

14 // func provides an upvalue for curr_func

15 self.functions[func.unwrap()].push_provider(

16 self.curr_func,

17 upval_idx + 1, // which upvalue is provided

18 ProviderType::Reg(reg),

19 );

20 return Some(upval_idx);

21 } else {

22 // go to the parent function

23 let p_func = &self.functions[func.unwrap()];

24 block = p_func.parent_block();

25 func = p_func.parent_func();

26 }

27 }

28 None

29 }

30 }
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Listing 5.6: The compile funcbody method.

1 impl IRGen {

2 fn compile_funcbody(&mut self, nodes: &Vec<Node<u8>>) -> usize {

3 ... // elided for clarity

4 let mut new_func = IRFunc::new(0, is_vararg);

5 new_func.set_parent_func(self.curr_func);

6 new_func.set_parent_block(self.curr_block);

7 self.functions.push(new_func);

8 self.curr_func = new_func_id;

9 let new_basic_block = self.curr_func().create_block();

10 self.curr_block = new_basic_block;

11 self.compile_param_list(&nodes[1]);

12 self.compile_block_in_basic_block(&nodes[3], new_basic_block);

13 self.curr_func = old_curr_func;

14 self.curr_block = old_curr_block;

15 let reg = self.curr_func().get_new_reg();

16 self.instrs().push(Instr::TwoArg(

17 Closure,

18 Arg::Reg(reg),

19 Arg::Func(new_func_id),

20 ));

21 ... // elided for clarity

22 reg

23 }

24 }

Listing 5.7: A Lua program which demonstrates upvalue propagation.

local a = 1

function f()

function g()

return a

end

g()

end
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use a, however, it has a as an upvalue. This is because g uses a which is defined in the module, but g is a
child of f. Thus, f needs to provide a as an upvalue to g, if g is called from f. This means that the upvalue
of g is ‘propagated’ to all the ancestors that do not define a as a local variable. As such, function f provides
its a upvalue as an upvalue to g. This is where the ProviderType::Upvalue variant is used. The exact
implementation of this feature is not shown for the sake of brevity, and can be found in the appendix.

The compile call method

Function calls can return values, as such they can be used in expressions. The compile expr method returns
a register in which the result of an expression is stored. In the case of function calls, the method invokes
compile call in order to generate a Call instruction. A Call instruction does not return a value, it simply
instructs the VM to call a given function. Because compile expr must return the result of an expression,
it emits a MovR instruction. The MovR instruction emitted instructs the VM to copy the first return value
of the function into a newly generated register. The compile expr method returns this new register, as it
stores the result of the call. The compile call method works very similarly to the algorithm described in
section 4.2.3.

The unpack to stack method

Function calls can return multiple values, and in certain circumstances, it is important to copy all the returned
values from the stack, not only the first one.

Listing 5.8: A Lua program which demonstrates stack unpacking.

1 function f()

2 return 1, 2, 3

3 end

4 function g(a, b, c)

5 print(a, b, c)

6 end

7 g(f()) -- prints 1, 2, 3

8 g(f(), f(), f()) -- print 1, 1, 1

In listing 5.8 the interpreter performs an unpacking operation on line 7. This means that all values
returned by f() are passed as arguments to g. In Lua, only the last expression of an expression list must
be unpacked. There are two types of expressions that need to be unpacked: function calls, and variable
arguments (varargs). One of the biggest problems is that the compiler does not know statically how many
return values a function has.

Listing 5.9: A function which returns a different number of values.

1 function f()

2 if some_condition then

3 return 1, 2, 3

4 else

5 return 1

6 end

7 end

In listing 5.9, f might return three values, or only one. The exact number of returned values is known
at run-time, as such, the compiler emits a special instruction which instructs the VM to unpack all return
values.

The unpack to stack method from listing 5.10 is used to unpack an expression to the stack. The compiler
uses this method when compiling function calls, or return statements. As described in an earlier section,
the MovR instruction is used to copy a return value of a function from the stack into a register. However,
the MovR instruction can also be used to push return values back to the stack. If the last operand of MovR

is 1, or 2, then the VM pushes all return values of the previously called function to the stack. The details
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Listing 5.10: The unpack to stack method.

1 impl IRGen {

2 fn unpack_to_stack(&mut self, last_expr: &Node<u8>, increment_ret_vals: bool) {

3 let reg = self.compile_expr(last_expr);

4 if self.is_unpackable(last_expr) {

5 {

6 let len = self.curr_block().instrs().len();

7 // this is either a VarArg instr, or a MovR

8 let last_instr = self.curr_block().get_mut(len - 1);

9 debug_assert!(last_instr.opcode() == MovR || last_instr.opcode() == VarArg);

10 *last_instr = Instr::OneArg(

11 last_instr.opcode(),

12 Arg::Some(1 + increment_ret_vals as usize),

13 );

14 }

15 // compile_expr generates (VarArg/MovR <reg> <op2> <op3>)

16 // but because we are modifying the last instruction, there is

17 // no need to keep the previously allocated register

18 self.curr_func().pop_last_reg();

19 } else {

20 ... // emit a PUSH instruction for <reg>

21 }

22 }

23 }

of the MovR instruction are given in section 5.2.3. The algorithm of the unpack to stack method is rather
straightforward. The implementation of unpack to stack first checks if the given expression is unpackable
or not (line 4). In the case it is not, then the compiler simply pushes the register in which the result of
the expression is stored to the stack (not shown in the listing for the sake of brevity). If the expression is
unpackable, then it means that the expression is either a function call or a vararg expression. This section
will only focus on the function call case, because the vararg case is very similar to it. The compiler knows
that the last instruction is a MovR instruction (lines 6-9). Because the expression is being unpacked to the
stack, the compiler modifies the operands of the MovR instruction (lines 10-13) in order to instruct the VM
to unpack all return values instead of only the first one. The increment ret vals parameter only tells the
compiler if the unpacking is done in a return statement, or in a function call. On line 12, the compiler sets
the special argument of the MovR to either 1, in the case increment ret vals is false, or to 2 otherwise.

Method calls

In Lua, a method call is another type of function call. Methods are functions which take the table on which
they are called on as an argument.

Listing 5.11: An example of a method.

1 local function g(self, a) print(self.i + a) end

2 x = {}

3 x.i = 1

4 x.g = g

5 x:g(2) -- prints 3

6 g(x, 2) -- also prints 3

Listing 5.11 shows an example of method calls. Lines 5 and 6 are equivalent, which means that compiling
a method call is very similar to compiling a function call. The compile method method of IRGen works
similar to compile call except that the compiler makes sure to push the table before the other arguments.
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Listing 5.12: The compile assignment method.

1 impl IRGen {

2 fn compile_assignment(

3 &mut self,

4 var: VarType,

5 right: &Node<u8>,

6 action: AssignmentType,

7 ) -> ResultType {

8 match var {

9 VarType::Name(name) => {

10 let mut value = self.compile_expr(right);

11 ...

12 if action == AssignmentType::LocalDecl || self.get_reg(name).is_some() {

13 ...

14 self.set_reg_name(value, name, action == AssignmentType::LocalDecl);

15 ResultType::Local(value)

16 } else {

17 if action != AssignmentType::Postponed {

18 self.set_upval(name, value);

19 }

20 ResultType::Global(value)

21 }

22 }

23 VarType::Table(from, attr) => {

24 let reg = self.compile_expr(right);

25 if action != AssignmentType::Postponed {

26 self.instrs().push(Instr::ThreeArg(

27 SetAttr,

28 Arg::Reg(from),

29 Arg::Reg(attr),

30 Arg::Reg(reg),

31 ));

32 }

33 ResultType::Table(reg)

34 }

35 }

36 }

37 }

The compile assignment method

In Lua, there are two main types of assignments:

1. to a variable: (local) name = expression,

2. to a table element: t[attr1][attr2] = expression

The compile assignment method from listing 5.12 takes three parameters, and returns a result. The first
parameter is the left-hand-side of the assignment, also called lvalue. In the compiler, an lvalue is represented
by a VarType. This enumeration represents the two assignment cases described above. The second parameter
of compile assignment is the expression to be stored in the variable, called rvalue, and the final argument
is an AssignmentType. This enumeration instructs the compiler how to deal with a particular assignment.

If the lvalue is a VarType::Name, i.e. a variable name, then the compiler generates code for the rvalue,
and checks if the symbol is a local variable or not (line 12). The get reg method, which was described in an
earlier section, returns the register from the current function, which contains the value of a given variable.
If the assignment type is LocalDecl, then this means that the source program declares a new local variable,
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thus there is no need to check if it is local or not. If the variable is a local one, then the compiler calls
set reg name on the register in which the result of the rvalue is stored. Note that compile expr generates a
new register in which the result of the expression is stored. This register does not have an associated name,
thus the compiler can assign a name to it, namely the name of the symbol. The set reg name method is
described in the next section, for now it is important to know that this method assigns a name to a register.
If the variable is not a local one, then it must be a global one, or an upvalue. In this case, the compiler calls
the set upval method. The set upval algorithm first checks whether the given symbol is an upvalue. If it
is, then the compiler emits a SetUpVal instruction. However, if the symbol is a global, the compiler emits a
SetUpAttr instruction to store the symbol in ENV (the first upvalue).

The Postponed variant of AssignmentType means that the compiler should not emit any instructions
to store the rvalue into the lvalue. However, the caller must emit the store at some point after calling
compile assignment. In the case of a local variable, this method returns a ResultType::Local, letting the
caller know that the expression has been stored in a variable local to the function. If, however, the symbol is
a global value, then the compiler returns a ResultType::Global. If the assignment type is Postponed, and
the result is a Global, then the caller must emit an instruction which stores the result into ENV.

The lvalue can also be a table assignment. The VarType::Table(from, attr) variant means that the
rvalue should be stored in the from table, at key attr. The caller can also postpone the store of the rvalue
using Postponed. In this case, the compiler returns a ResultType::Table, meaning that the rvalue is stored
in a table.

The set reg name method

This method calls set reg name on the current basic block. The method takes 3 parameters, the register,
the new name of the register, and a boolean value (is local decl) which describes the type of variable:
local or non-local. If the value is a local one, then the compiler creates a mapping between the name and
the register in the locals attribute of the basic block. If the value is not a local one, then the non-locals

attribute is updated instead.

Listing 5.13: Scoped assignments.

1 local a = 1

2 do

3 a = 2

4 a = 3

5 local a = 4

6 a = 5

7 local a = 6

8 end

Each assignment from listing 5.13 triggers a call to the set reg name method. The comments from list-
ing 5.14 show how the locals and non-locals attributes of BasicBlock2 are modified by the set reg name

method. Each time this method is called with is local decl set to true, the block emits a Phi instruction.
When a is declared on line 5 (line 8 in IR), the basic block emits a Phi which merges all the values stored
in non-locals for the entry ‘a’. A similar instruction is emitted when the second local ‘a’ is declared on
line 7 of the Lua source file. However in this case the Phi merges the locals entry for ‘a’ instead. The
Phi instruction forces the registers it takes as an operand into the same VM register. In order to further
illustrate why this is necessary consider the following example:

Because the compiler generates an SSA IR, the a declared on line 1 in listing 5.15 is placed into reg1,
but the second a (line 4) is placed into reg2. However, a is an upvalue of g, but the compiler only records
reg1 as being an upvalue of g. This means that the compiler must associate the two registers with a Phi so
that when register allocation is done, the two registers are allocated to the same bytecode register, in order
to preserve the meaning of the original program.
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Listing 5.14: The SSA IR of listing 5.13

1 # locals = { ’a’: [0] }

2 BasicBlock1 {

3 Mov Reg(0), Int(1)

4 }

5 BasicBlock2 {

6 Mov Reg(1), Int(2) # non-locals = { ’a’: [1] }

7 Mov Reg(2), Int(3) # non-locals = { ’a’: [1, 2] }

8 Mov Reg(3), Int(4) # locals = { ’a’: [3] }

9 Phi Reg(1), Reg(2) # non-locals = { ’a’: [1] }

10 Mov Reg(4), Int(5) # locals = { ’a’: [3, 4] }

11 Mov, Reg(5), Int(6) # locals = { ’a’: [5] }

12 Phi Reg(3), Reg(4)

13 }

14 ...

Listing 5.15: An example which shows why the extra Phi instructions are necessary.

1 local a = 1

2 local function g() print(a) end

3 g() -- prints 1

4 a = 2

5 g() -- prints 2!

The compile assignments method

This method is used to compile a multi-assignment statement. There are two types of multi-assignments:
local and non-local. The compile assignments method takes three parameters, a list of lvalues (l0, l1, ..., ln),
a list of rvalues (r0, r1, ..., rm), and a boolean value which denotes whether the assignment is local or not.
The algorithm begins by creating assignments between (l0, ..., lk) and (r0, ..., rk) where k = min(m,n). If the
number of expressions is greater than the number of lvalues (m > n), then the compiler must also evaluate
(rk+1, ..., rm). This is necessary as it is part of the language reference manual. In the other case (n > m),
the compiler needs to perform an unpacking operation. This means that the last expression rm is unpacked
into the lvalues (lm, ..., ln). If the last expression is unpackable, then the unpacking is performed by the
unpack method. This method takes two parameters: the registers in which the compiler must perform the
unpacking, and the last expression. In the case of a function call, the compiler emits MovR instructions which
copy return values one by one into the given registers. However, if the last expression is not unpackable, then
the compiler must set the extra lvalues to nil.

If an lvalue is a table, a global symbol, or an upvalue, then the compiler will emit instructions (for
example SetAttr, or SetUpVal) in order to store the rvalue into the lvalue. However, if the last expression is
unpackable, the compiler will emit MovR instructions in order to perform the unpacking. The VM expects MovR
instructions to be consecutive, which means that the compiler must postpone emitting the store instructions
until after the sequence of MovRs.

Vararg functions

In Lua, a function takes a variable number of arguments if the last parameter is the ... symbol. When the
compiler encounters a function definition that has such a parameter, it sets the is vararg attribute of the
IRFunc to true.

All parameters of a function are stored on the stack, before the return values. The VarArg instruction is
used to copy a vararg from the stack into a register. It works similarly to MovR, because both instructions
copy a certain value from the stack into a specfied register. The main difference between the two is how they
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are implemented in the VM. The ... parameter can also be used in expressions. The compiler ensures that
if this parameter is used in an expression, it is unpacked if necessary. The unpacking logic for varargs is the
same as the unpacking logic for function calls, thus it will not be described for the sake of brevity.

On-the-fly dominator trees

If statements, for loops, while loops, etc. are implemented as described in chapter 4. However it is worth
mentioning that the compiler also generates the dominator tree of a function while generating branching
statements.

For instance, when the compiler encounters an if statement, it creates a dominator link between the block
in which the if is encountered, and the block to which all branches jump to. A similar approach is taken when
compiling loops and do..end blocks. Using such an approach results in a block only knowing its immediate
dominators, not all of them. This is not a problem, as a dominator of an immediate dominator is also a
dominator of the current block, and therefore can be easily computed.

5.1.2 The bytecodegen module

This module is used to generate bytecode from LuaIR, and its main entry point is the compile to bytecode

function. This function creates a new BcGen compiler, and calls its compile method in order to generate
bytecode.

The first operation that the bytecode compiler performs is a Phi substitution.

The substitute phis method

This is a method defined in LuaIR. Its main purpose is to substitute all uses of registers based on Phi

instructions. To illustrate this, consider the following example:

Listing 5.16: An example of a program which uses Phis.

1 BasicBlock1 {

2 Mov Reg(0), Int(0)

3 Mov Reg(1), Int(1)

4 Mov Reg(2), Int(2)

5 Mov Reg(3), Int(3)

6 Add Reg(4) Reg(0) Reg(1)

7 }

8 BasicBlock2 {

9 Phi Reg(0), Reg(4)

10 Phi Reg(2), Reg(3)

11 }

The algorithm performs a Phi substitution on the IR from listing 5.16. This means that all uses of Reg(4)
are substituted with Reg(0), and Reg(2) with Reg(3). These two substitution are performed due to the Phi

instructions from lines 9 and 10 of listing 5.16. Listing 5.17 shows the IR after Phis are removed.
The Phi substitution algorithm processes the IR in two passes. The first pass collects all substitutions,

and the second pass performs the substitutions. Each Phi instruction is converted into a pair. The first
element is the first operand of the Phi. It represents the register that the other registers will be substituted
by. The second element of the pair is a list of the remaining operands of the Phi instruction. These registers
are going to be replaced by the first register of the pair. Each of these pairs is saved into a map. The second
pass iterates over each instruction of the current function and applies the substitutions gathered in the first
pass. The compiler also makes these substitutions in the provides attribute of the current function, in order
to ensure that the correct registers are passed as upvalues. Although this method destroys the SSA property
of the IR, it is only called during bytecode generation.

The next stage of bytecode generation is the translation of the IR into bytecode. This stage is carried out
by the bytecode compiler, represented by the BcGen structure. The following sections describe the attributes
of the BcGen structure, as they are used extensively during code generation.
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Listing 5.17: Listing 5.16 where Phi substitution was performed.

1 BasicBlock1 {

2 Mov Reg(0), Int(0)

3 Mov Reg(1), Int(1)

4 Mov Reg(2), Int(2)

5 Mov Reg(2), Int(3)

6 Add Reg(0) Reg(0) Reg(1)

7 }

8 BasicBlock2 {

9 Phi # consumed by substitute_phis

10 Phi # consumed by substitute_phis

11 }

The const map attribute

An important attribute of the bytecode compiler is const map. The ConstantsMap structure creates three
constant tables, one for ints, one for floats, and one for strings. Whenever the compiler encounters an
argument which represents a constant, its value is mapped to its index in the constant table. The get int

method returns the index of an integer in the constant table. If the integer has not been seen yet, the map
creates a new index for it, and returns it. The get str and get float methods work similarly to get int.
They are used to perform the same operation for constant strings, and floats respectively.

The bytecode instruction set provides a few extra opcodes in addition to those defined by the IR. For
instance, Ldi is used to load an integer into a register. This second operand of Ldi is a number which
represents the index of an integer in the constant table. The constant tables of ConstantsMap are also stored
in the bytecode. This is necessary because bytecode instructions, such as Ldi, have two operands. The first
operand represents the register in which an integer is loaded, and the second operand encodes the index of
the integer in the constant table. The VM uses this index, and the constant table in order to get the actual
value that is loaded into the register. The Ldf, and Lds instructions are used to copy values from the floats
and strings constant tables.

The blocks attribute

The bytecode compiler generates bytecode for each basic block. The bytecode of a basic block consists of the
bytecode instructions that resulted from compiling the IR instructions from the basic block. Each compiled
basic block is appended to the final bytecode. The bytecode does not have the concept of basic blocks, as it
only consists of bytecode instructions. However, the compiler can calculate where the instructions of a basic
block begin in the bytecode. This is called the starting position of the block. The blocks attribute maps
each BasicBlock to its starting position in the bytecode. This information is used later in the compilation
process in order to patch jump instructions.

The branches attribute

This attribute represents a list of pairs, where the first element is the position of a jump instruction, and
the second element the basic block index the instruction jumps to. The bytecode versions of Jmp, JmpNe,
and JmpEq have a different meaning than their IR counterparts. Because the bytecode does not have basic
blocks, jump instructions have an integer operand which represents the number of instructions that the VM
needs to jump over. For instance an instruction such as JmpNe Reg(0), Block(1), Block(2) is converted
to JmpNe Reg(0), N, where N is the number of instructions that the VM needs to skip in order to start the
execution of the instructions which were part of BasicBlock2.

The lowering of the IR to bytecode is a straightforward process. Most IR instructions have a one-to-one
mapping to bytecode instructions. Recall that bytecode instructions are 32-bits in size, and that each operand
of the instruction has a size of 8 bits. This means that the compiler must make sure that, for instance, the
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Listing 5.18: A snippet from the compile instr method.

1 impl BcGen {

2 fn compile_instr(&mut self, f: usize, bb: usize, i: usize, instrs: &mut Vec<u32>) {

3 ...

4 match opcode {

5 ...

6 Mov => {

7 if let Instr::TwoArg(_, ref arg1, ref arg2) = instr {

8 let (opcode, arg2) = match *arg2 {

9 Arg::Reg(reg) => (Opcode::Mov, reg),

10 Arg::Int(i) => (Opcode::LDI, self.const_map.get_int(i)),

11 ...

12 Arg::Bool(b) => (Opcode::LDB, b as usize),

13 _ => panic!("Mov shouldn’t have {:?} as an argument.", arg2),

14 };

15 instrs.push(make_instr(opcode, arg1.get_reg() as u8, arg2 as u8, 0))

16 }

17 }

18 Jmp => {

19 let len = instrs.len();

20 instrs.push(if let Instr::OneArg(_, arg1) = instr {

21 self.branches.push((len, arg1.get_block()));

22 make_instr(opcode.to_opcode(), 0, 0, 0)

23 } else {

24 panic!("Not enough arguments for {:?}!", opcode)

25 })

26 }

27 ...

28 }

29 }

30 }

IR does not use registers whose number is larger than 255. There are, however, some instructions that do
not have one-to-one mappings to bytecode instructions such as: Mov, Jmp, JmpNe, and JmpEq.

The compiler generates bytecode one function at a time. For each function, it generates the instructions
of each basic block, and creates a BcFunc structure which represents a function in the bytecode.

Listing 5.18 shows how Mov and Jmp are lowered to bytecode. The Mov instruction is used with many
different arguments. In listing 5.18, arg2 represents the value that is loaded into the register stored in arg1.
For example, if the second argument is an Arg::Int, the compiler creates an Ldi instruction, and converts
the number into an index using the get int method of ConstantsMap. Similarly, the bytecode provides Ldt
for tables, Ldb for bools, etc. The make instr function from line 18 takes four u8 arguments and generates
a 32 bit instruction which the VM can decode.

Jump instructions are also handled differently. Line 23 creates a jump instruction, and adds it to the
bytecode instructions of the function. On line 24, the compiler creates an entry in the branches attribute,
where the first element of the pair is len, i.e. the position of the jump instruction in the bytecode, and
the second element is arg1.get block(), which is the index of the BasicBlock to which the VM jumps.
On line 25, the compiler creates an empty jump instruction which is later patched by the compiler. Once
the instructions of the IR are all converted into bytecode instructions, the compiler loops through all the
branches, and changes the operands of jump instructions based on how far the instructions are from the
basic blocks they jump to. This process uses the blocks attribute to find out where each basic block starts
in the bytecode.

Listing 5.19 contains the IR of a program that uses jump instructions. Listing 5.20 shows the bytecode
produced by the BcGen compiler from this IR. As described above, most IR instructions have a corresponding
bytecode instruction. For example, the Gt instruction which checks if an expression is greater than the value
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Listing 5.19: IR

1 BasicBlock1 {

2 Mov Reg(0), Int(2)

3 Mov Reg(1), Int(2)

4 Gt Reg(2), Reg(0), Reg(1)

5 JmpNe Reg(2), Block(2), Block(3)

6 }

7 BasicBlock2 {

8 Mov Reg(3), Int(3)

9 Jmp Block(3)

10 }

11 BasicBlock3 {

12 Phi Reg(0), Reg(3)

13 }

Listing 5.20: Bytecode

Ldi 0 0

Ldi 1 0

Gt 2 0 1

JmpNe 2 2 0

Ldi 0 1

Jmp 0 0 0

of another expression has the same semantics both in the IR and in the bytecode. The first Mov instruction
is converted into an Ldi because the second argument of the IR instruction is an Int. Ldi 0 0 means
‘load the integer from index 0 of the integer constant table, and store it into register 0’. The number 2

is associated to index 0 because it is the first constant integer which is processed by the compiler. The
Mov instruction from line 3 also takes 2 as an argument, therefore the Ldi instruction will also load the
first integer from the constant table. The bytecode version of the JmpNe instruction is different than its IR
counterpart. The bytecode instruction reads: ‘if the value in register 2 is not true, then jump over the next
two instructions’. Moreover, the blocks attribute has the following entries: {1 -> 0, 2 -> 4, 3 -> 6}. As
seen in the figure, BasicBlock1 starts at the first instruction of the bytecode, then BasicBlock2 at the fifth
instruction, etc. The branches attribute contains two entries: [(3, 3), (5, 3)]. The first entry means
that the fourth instruction of the bytecode jumps to the third basic block, and the second entry means that
the sixth instruction can jump to the third basic block.

The second operand of the JmpNe instruction represents the number of instructions the VM needs to jump
over if the first operand is false. This is calculated by subtracting the position of the instruction, 3, from the
index of the destination block in the bytecode (blocks[3] - 1 = 5). Thus, 5 - 3 = 2, becomes the second
operand of JmpNe during the patching process.

5.2 The luavm crate

This crate represents the virtual machine, which takes as input Lua bytecode and executes it. The virtual
machine has three main components: the VM itself, the value system, and the opcode implementations.

5.2.1 The LuaVal system

The value system of the VM is implemented by the lua val module. The VM supports bools, integers, floats,
strings, tables, and closures. Closures are represented by a bytecode function and its upvalues.

The LuaVal structure represents a tagged pointer, where the last 3 bits of the val attribute indicate the
type of the value.

The val attribute, shown in listing 5.21, is a 64-bit unsigned integer which stores two pieces of information:

1. The first 63 bits store the actual data (an int, float, etc.), or a pointer to where the data is located

2. The lowest-order 3 bits store a LuaValKind, which is used at run-time to determine the type of data
that is stored in the first 63 bits

Pointers on 64-bit machines are always 8-bytes aligned. This means that the last 3 bits of a pointer are
always set to 0. The last 3 bits can be used to store information. In this case, the last 3 bits will be used
to encode one of the variants of LuaValKind. Using 3 bits, it is possible to encode 23 = 8 different values.
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Listing 5.21: The LuaVal and LuaValKind types

pub enum LuaValKind {

BOXED = 0,

INT = 1,

FLOAT = 2,

Gc = 3,

GcRoot = 4,

BOOL = 5,

NIL = 6,

}

pub struct LuaVal {

val: Cell<usize>,

}

LuaValKind has 6 variants, which means that the integer representation of a variant can be safely stored in
the last 3 bits of a pointer.

LuaVals implement various types of methods such as arithmetic operations, relational operations, and
table look-ups shown in listing 5.22. For instance the add method adds a LuaVal to another LuaVal. The
Lua reference specifies that if any of the operands of an arithmetic operation is a float, then both values must
be converted to floats, before performing the arithmetic operation. The implementation of the VM follows
the language reference as shown on line 12: the system checks if any of the operands is a float, and on line 13
both operands are converted to float and summed. If at any point a conversion fails, the ? operator ensures
that the method returns a LuaError, which is propagated to the VM.

LuaVals also implement methods which allow base types such as i64 or f64 to be converted into LuaVals.

The INT, and FLOAT tags

These tags are used to represent ‘raw’ integers and floats. If any of these tags are used, then the first 63 bits
of a LuaVal represent an integer or a float, and not a pointer. The explanations that follow will use the INT

tag as an example, but the FLOAT tag is implemented similarly to INT.
Because the LuaVal can only store 63 bits of data, this means that the encoded integer must not have a

value that uses more than 63 bits. The value system handles two types of integers:

1. If none of the 3 highest-order bits of the integer are set, then it means that the value can be represented
with 63 bits. In this case, the value system shifts the integer 3 places to the left, setting the 3 lowest-
order bits to 0. This means that the system can safely encode the INT tag into the 3 lowest-order
bits.

2. If any of 3 highest-order bits of the integer are set, then the system cannot encode the tag without
losing information. In this case, the integer is converted into a LuaObj. The system creates a pointer
to this LuaObj, and stores its address in the 63 bits of data of a LuaVal.

Floats are handled very similarly to integers, and will not be described for the sake of brevity.

The LuaObj trait

Traits in Rust are similar to Java interfaces. Rust provides trait objects, which are used to achieve dynamic
typing. For example Box<LuaObj> is a trait object. A Box in Rust is a pointer to a type that is allocated on
the heap. Box<LuaObj> represents a pointer to an object that implements the LuaObj trait. Trait objects are
also called ‘fat pointers’ in Rust, because they store two different pointers: a pointer to the data (LuaInt,
LuaFloat, etc.) and a pointer to the virtual functions table. This means that the size of a Box<LuaObj> is
not 64 bits, but 128 bits, and that it is not possible to store a Box<LuaObj> into LuaVal. A way around this

48



Listing 5.22: Some of the methods of LuaVal

1 impl LuaVal {

2 ...

3 pub fn to_float(&self) -> Result<f64, LuaError> {

4 ...

5 }

6 ...

7 pub fn set_attr(&self, attr: LuaVal, val: LuaVal) -> Result<(), LuaError> {

8 ...

9 }

10

11 pub fn add(&self, other: &LuaVal) -> Result<LuaVal, LuaError> {

12 Ok(if self.is_aop_float() || other.is_aop_float() {

13 LuaVal::from(self.to_float()? + other.to_float()?)

14 } else {

15 LuaVal::from(self.to_int()? + other.to_int()?)

16 })

17 }

18 ...

19 pub fn set_upval(&self, i: usize, value: LuaVal) -> Result<(), LuaError> {

20 ...

21 }

22 }

problem is to create a Box<Box<LuaObj>, i.e. a pointer to a trait object. This means that in order to get the
underlying LuaInt for instance, the value system must follow two pointers instead of one.

The LuaObj trait defines all the operations that can be performed on integers, floats, and strings. The
LuaInt, LuaFloat, and LuaString structures are wrappers around the i64, f64, and String types of Rust,
and implement this trait.

When the value system creates a LuaString, or LuaInt (which stores an integer whose value does not fit in
63 bits), it allocates a Box<Box<LuaObj>> and stores it in the val attribute together with the LuaValKind::BOXED
tag.

The UserTable type

This type implements the table type of Lua. This structure contains one field, v, which is a HashMap from
LuaVals to LuaVals. LuaVals can be compared, and hashed, thus they can be used with Rust’s HashMap

type.

The UserBcFunc type

UserBcFuncs represent functions that are defined in the bytecode. The attributes of this structure include:

1. upvals - the upvalues of the function, represented as a list of LuaVals.

2. reg count - the number of virtual registers that the function uses. This information is extracted from
the bytecode.

3. param count - the number of formal parameters of the function. This information is also extracted
from the bytecode.

4. ret vals - the number of values pushed to the stack by the function as return values.

5. index - the index of the BcFunc from the bytecode to which the VM ‘jumps’ when the UserBcFunc is
called.
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Listing 5.23: Vm::new method

1 impl Vm {

2 pub fn new(bytecode: LuaBytecode, script_args: Vec<&str>) -> Vm {

3 let mut registers: Vec<LuaVal> = Vec::new();

4 registers.resize(REG_NUM, LuaVal::new());

5 let mut env = LuaVal::from(UserTable::new(HashMap::new()));

6 Vm::init_stdlib_and_args(&script_args, &mut env);

7 let closure = {

8 let index = bytecode.get_main_function();

9 let main = bytecode.get_function(index);

10 let func = UserBcFunc::with_upvals(index, 0, main.param_count(), vec![env.clone()]);

11 LuaVal::from(func)

12 };

13 let mut stack_frames = Vec::with_capacity(255);

14 stack_frames.push(StackFrame { closure, start: 0 });

15 Vm {

16 bytecode, registers, stack: vec![], top: 0,

17 stack_frames, curr_frame: 0, env, pc: 0,

18 }

19 }

20 }

The BuiltinBcFunc type

BuiltinBcFuncs are pointers to functions defined in the VM. For instance print is a builtin function, the
implementation of which is provided by the VM. This structure has two attributes:

1. handler - a pointer to a function from the VM which implements a particular operation. When the
VM calls a BuiltinBcFunc, it extracts the handler pointer and invokes it.

2. ret vals - the number of values pushed to the stack by the function as return values

The GcVal trait

In the LuaVal system, closures (UserBcFunc, BuiltinBcFunc), and tables are garbage collected. These
structures implement a trait called GcVal, which defines operations such as: set upval, set attr, etc. For
instance, if the underlying object is a UserTable, then set attr can be used to store a value at a particular
attribute. Other methods, such as set upval, can only be used if the underlying object is a closure.

The objects implementing this trait, are garbage collected by the value system. For the purposes of this
project, the VM uses an external crate, called gc, which implements a garbage collector for Rust. LuaVals
which are garbage collected are all stored with the Gc or GcRoot tags. As a disclaimer, the implementation
of the Gc, and GcRoot tags was heavily inspired by the implementation of the Gc type from the gc crate.

5.2.2 The VM

The new method of the VM sets up a new instance, and prepares the environment in which the bytecode
will execute. The execution starts in the function which is returned by the get main function method of
LuaBytecode. The functions attribute of LuaBytecode stores a list of BcFuncs. The get main function

method returns the index of the entry function.
On lines 3-4 of listing 5.23 the VM sets up the 256 registers that the instructions of the bytecode can use

to perform operations. Line 5 sets up the ENV table, which is going to be stored as an attribute of Vm, and
passed as the first upvalue to all functions.

In the VM, a closure is an object which represents a function, and its upvalues. Lines 7-12 set up a
closure which represents the module of the source file. The index variable, on line 8, is the index of the
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Listing 5.24: Vm::eval and Vm::closure methods.

1 impl Vm {

2 pub fn closure(&self) -> &LuaVal {

3 &self.stack_frames[self.curr_frame].closure

4 }

5

6 pub fn eval(&mut self) -> Result<(), LuaError> {

7 self.pc = 0;

8 let index = self.closure().index()?;

9 let len = self.bytecode.get_function(index).instrs_len();

10 while self.pc < len {

11 let instr = self.bytecode.get_function(index).get_instr(self.pc);

12 (OPCODE_HANDLER[opcode(instr) as usize])(self, instr)?;

13 self.pc += 1;

14 }

15 Ok(())

16 }

17 }

main function in the bytecode. The main variable represents a reference to the actual BcFunc object. Line
10 creates a new UserBcFunc which represents the main function of the bytecode. Note that env is passed as
an upvalue, as specified in the reference manual. On lines 13-14 the VM sets up the stack frames attribute,
and pushes a new frame which contains the newly created UserBcFunc. Stack frames are described in the
following sections.

The eval method

This is the method that starts the execution of the current stack frame, represented by the curr frame

attribute.
Listing 5.24 shows the implementation of eval. The Vm sets its pc attribute to 0 (line 3), in order to start

the execution from the first instruction. The closure method returns the closure object of the current
stack frame. In the beginning, this is set to the closure which represents the module of the source file. Lines
6-10 implement the dispatch loop. If at any point an instruction fails, the method returns a LuaError.

The dispatch loop is implemented with the help of an array of function pointers. The OPCODE HANDLER,
from line 12, is an array that has the size of the number of operations supported by the VM. At each index of
the array, the VM stores a function pointer. For example, at index 0, the VM stores the function pointer which
can handle the Mov operation. During instruction dispatching, the VM extracts the opcode of the current
instruction, and uses it as an index into the OPCODE HANDLER array in order to find the function which handles
that particular opcode. All of these function pointers return a Result, and take two arguments: the state of
the VM, and the instruction being executed. The functions are defined in the instructions module of the
luavm crate.

5.2.3 The instructions module

This module contains the implementations of all the instructions that are defined in the bytecode instruction
set. Binary and unary instructions such as add, equals, unary minus are already implemented by the value
system. In such cases, the VM delegates the operation to the value system. For example, listing 5.25 shows
the implementation of the Umn opcode, which stands for unary minus.

The umn function extracts the second operand of the instruction (line 3) which represents operand of the
unary operation, and negates it using the LuaVal API. The result is stored into the register defined by the
first operand of the instruction (line 4).

Most opcode implementations follow the same basic structure, although there are a few instructions, such
as Call, MovR, VarArg, Closure, that cannot simply delegate to LuaVal.

51



Listing 5.25: The implementation of unary minus.

1 // R(1) = -R(2)

2 pub fn umn(vm: &mut Vm, instr: u32) -> Result<(), LuaError> {

3 let val = vm.registers[second_arg(instr) as usize].negate_number()?;

4 vm.registers[first_arg(instr) as usize] = val;

5 Ok(())

6 }

Listing 5.26: The implementation of the Closure opcode.

1 pub fn closure(vm: &mut Vm, instr: u32) -> Result<(), LuaError> {

2 let func = vm.bytecode.get_function(second_arg(instr) as usize);

3 let upvals_len = func.upvals_count();

4 let mut upvals = Vec::with_capacity(upvals_len + 1);

5 upvals.push(vm.env.clone());

6 for _ in 0..upvals_len { upvals.push(LuaVal::new()); }

7 let ufunc = UserBcFunc::new(func.index(), func.reg_count(), func.param_count());

8 vm.registers[first_arg(instr) as usize] = LuaVal::from(ufunc);

9 let caller_index = vm.stack_frames[vm.curr_frame].closure.index()?;

10 if let Some(provides) = vm.bytecode.get_function(caller_index)

11 .provides().get(&(func.index() as u8)) {

12 for (provider, upval) in provides.iter() {

13 ...

14 }

15 }

16 vm.registers[first_arg(instr) as usize].set_upvals(upvals)?;

17 Ok(())

18 }

The closure function

The closure function must create a new LuaVal of type UserBcFunc, initialise its upvalues, and store it into
a register.

Listing 5.26 shows the implementation of the Closure opcode. The second operand of the instruction
gives the index of the function in the bytecode. Lines 2-6 set up the upvalues of the closure, and on line
5 the first upvalue is set to ENV. On lines 7-8 the VM creates a UserBcFunc, and stores the corresponding
LuaVal into the register denoted by the first operand of instr. The caller index variable represents the
index of the function in which the Closure instruction is executed. On lines 10-15, the VM checks if the
caller index function provides any upvalues to the newly defined closure. Once the upvalues are updated,
line 16 sets the upvalues of the closure.

The anatomy of a function call

In section 4.2.3 it was described how the compiler emits instructions for a function call. It is important to
describe what a stack frame looks like from the perspective of the VM.

Lines 2-3 of listing 5.28 set up the local function f. Every function call starts with a SetTop instruction,
whose first argument is the register which contains the closure that is about to be called. In this case, on line
4, the compiler emits a SetTop instruction for register 0, which contains the closure. The SetTop instruction
creates a new StackFrame, and assigns to its closure attribute the LuaVal from register 0, and to start the
current top of the stack, which is 0 in this case. On lines 5-10, the VM evaluates the arguments of the call,
and pushes them to the stack. Finally, the VM executes the Call instruction which jumps to the definition
of BcFunc1 from listing 5.28, because the closure from register 0 points to it.
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Listing 5.27: An example of a function that uses varargs.

1 local function f(a, ...)

2 return ...

3 end

4 local a, b = f(1, 2, 3)

Listing 5.28: Bytecode for listing 5.27

1 BcFunc 0 {

2 Ldn 0

3 Closure 0 1

4 SetTop 0

5 Ldi 2 0

6 Push 2

7 Ldi 3 1

8 Push 3

9 Ldi 4 2

10 Push 4

11 Call 0

12 MovR 5 0

13 MovR 6 1

14 }

15 BcFunc 1 {

16 VarArg 0 0 2

17 Ret

18 }
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ret2 = 311

ret1 = 210

reg69

...

reg03

arg3 = 3vm.top → 2
varargs (...)

arg2 = 21

aarg1 = 1start → 0

The stack of the VM

Figure 5.1: The stack of f before it returns to the caller.

When the VM starts executing the Call instruction, the top of the stack is at index 2 shown in figure 5.1.
The start from the figure is the top of the stack recorded by the newly created StackFrame, i.e. the index
at which the arguments of the call start.

The call function implements the Call opcode. This function first sets up the upvalues of the closure
that is called using the set upval method defined on LuaVals. In this case the closure does not have any
upvalues, other than ENV, which was already set by the closure function. Then, the VM saves the registers
of the caller, by pushing them to the stack. These can be seen on figure 5.1 between the indices 3 and 9. This
is necessary because the called function might modify some of the registers of the parent. Now the registers
can be modified without overwriting any of the values computer by the parent function. Function f expects
its first argument to be in register 0, thus the VM copies arg1 from the stack into register 0, before the VM
jumps to the function. Finally, the VM sets its curr frame to the next stack frame (the frame of f), and
calls eval recursively.

Function f returns all of its variable arguments, as seen on line 2 of listing 5.27. This is done through the
VarArg instruction from line 16 of listing 5.28. The last argument of this instruction is 2, which means that
the VM should push all the varargs of the current function to the stack, and increment the return values of
the function. In this case, the VM calculates that the varargs of f start at index 1 (figure 5.1), and end at
index 2. Thus, the VM pushes two return values to the stack (index 10 and 11), and sets the ret vals of
the current closure, which is the closure which represents function f, to 2. Once the recursive call of eval

exits, the VM continues the call algorithm. First, the VM restores the registers of the caller. If the function
modified any of its upvalues, the state of the caller must be updated as well, thus the VM does an inverse
operation, where it copies the upvalues of the called function back into the registers where they came from.

The compiler always emits MovR instructions after a Call in order to save the return values of a function.
The VM executes these MovR instructions, and copies the return values from the stack to the desired registers.
Consider the instruction from line 13 of listing 5.28. The VM copies the second return value from the stack
(index 11) into register 6 of the caller. Once the VM returns all the values, the stack frame is removed. This
is done by simply moving the stack pointer back to the start attribute of the current StackFrame. Once
the call algorithm finishes, the curr frame is set back to the StackFrame of the caller.

The special MovR and VarArg operands

In the previous section, and in chapter 2, it was mentioned that both MovR, and VarArg can have a special
third argument. Both of these instructions copy values from the stack stored by the VM, as such, their
implementations are very similar.

There are three main uses of MovR:

1. If the last operand of a MovR is 0, then the first two operands are used by the VM to copy the specified
return value from the sack into a specified register. This is used, for instance, when a function call is
part of an assignment statement.

2. If the last operand is 1, it means that the VM should remove the stack frame of the previous call, and
keep its return values on the stack. The main use of this is when the results of a function call are
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unpacked as arguments to another function call. The VM pushes all the return values of previous call
to the stack as arguments to the new call.

3. If the last operand is 2, then the VM pushes all return values of a function call to the stack, and
increments the ret vals attribute of the parent function. This is mainly used when a function call is
unpacked in a return statement.

The nested stack frames problem

The SetTop instruction is a solution to the problem of nested stack frames. This occurs when the argument
of a function call is another function call. To illustrate this problem consider the following Lua snippet:

Listing 5.29: Nested stack frames.

local function f(a, b) end -- left empty for the sake of brevity

local function g(a) return a end

f(1, g(2))

Listing 5.30: Bytecode for listing 5.29 with SetTop instructions removed.

1 BcFunc 0 {

2 Ldn 0

3 Closure 0 1 # load function f

4 Ldn 2

5 Closure 2 2 0 # function g

6 Ldi 4 0

7 Push 4

8 Ldi 5 1

9 Push 5

10 Call 2

11 MovR 0 0 1

12 Call 0 # call f

13 }

If the SetTop instructions are removed, the VM cannot tell which locations from the stack are meant as
arguments to a call. For instance, when the VM executes the instruction from line 10 (listing 5.30), it does
not know if all the arguments from the stack (lines 6-9) are meant as arguments to the closure of g. In Lua,
it is possible to call functions with any number of arguments. Thus, the VM cannot use the number of formal
parameters of a function to guess where its arguments start on the stack. SetTop solves this issue as it saves
the top of the stack before the actual arguments of the call are pushed. The VM can now correctly identify
which ranges from the stack correspond to the arguments of the current call.

5.2.4 The standard library

The VM defines a standard library which is loaded when the VM is created. The VM only supports a
few functions such as print, assert, and io.write. When the VM is created, the implementation cre-
ates BuiltinBcFuncs which wrap these functions, and adds the corresponding LuaVals into the env at-
tribute. When a user program calls print, the compiler emits a Call to ENV["print"]. The VM stores
the BuiltinBcFunc of print in its env attribute, thus the VM will call the print function, even though the
user did not define it.
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Chapter 6

Testing

6.1 Unit tests

Both the luacompiler, and luavm crates have unit tests for different components.

6.1.1 The luacompiler crate

The compiler has a comprehensive set of unit tests which check if the compiler emits code correct Lua IR
from a given parse tree. Every feature supported by the compiler has an associated test. For instance, there
are four different tests for if statements. This is because there are many cases that need to be handled
by the compiler such as an if without an else, multiple elseifs, nested ifs, etc. The tests also check
if the dominator tree links, and parent-child relationships are correct, and if the compiler produces the
correct upvals, and provides attributes. There are also tests for nested loops, function calls, and argument
unpacking. Tests provide a good overview of how the compiler emits IR for certain sequences of instructions,
thus they can be used for documentation purposes.

There are also unit tests for the substitute phis algorithm of LuaIR. This is an important phase in
bytecode generation, and the algorithm must be correct, otherwise it would not be possible to know if the
VM executes bytecode correctly.

The ConstantsMap structure is also unit tested to check whether the constant tables are generated cor-
rectly.

The functions from the bytecode module are tested, in order to ensure that the VM can correctly decode
instructions, and their operands.

6.1.2 The luavm crate

The LuaVal structure has many different types of tests, as it represents the main component of the VM. The
test suite aims to test the interaction between all the possible types of LuaVals. For instance, one of the
tests checks that all integer operations work correctly on LuaVals tagged with either LuaValKind::INT or
LuaValKind::BOXED. Similar tests are defined for floats, Strings, UserTables, and UserBcFuncs. There
are also tests which check if the binary operators are implemented correctly. For instance, the test for addition
checks whether the result of adding two integers also yields an integer, or if adding a float to a string results
in a float. All combinations are checked in order to ensure that the language reference is followed correctly.

The Vm structure is another important component that is tested. The Lua code being tested always
stored result into ENV. Because the VM has direct access to the env attribute, the tests check whether
certain attributes of env are set, and contain the correct results.

6.2 Black-box testing

Both the compiler and the VM are black-box tested in order to ensure that Lua programs can be correctly
compiled, and produce the correct results.
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Black-box testing the compiler is a challenge because there is no correct answer to how a source file
should be translated to bytecode. The current approach involves compiling a set of source files, and saving
their bytecode to disk. The test involves compiling the source files to bytecode again, and checking if the
resulting bytecode is the same as the one originally generated. The saved bytecode was manually verified to
be correct. If the implementation of the compiler is changed frequently, then this is not a feasible testing
approach. However, considering the small scale of the project, this kind of test will suffice as the compiler is
not changed very often.

The most important tests of this project test the VM. The test suite consists of a directory which contains
a number of Lua source files, ranging from small programs such as a simple function calls, to more complex
functions such as Fibonacci function. In order to create such tests, it was necessary to implement the assert

function from the Lua standard library. A test passes if the VM does not report a LuaError. If an assertion
fails, then the VM will output a LuaError::Error("Assertion Failed"). For instance, the Fibonacci
test defines the Fibonacci function, and asserts whether different inputs produce correct results. The VM
also has a special test function which downloads the luajit test-suite and runs a subset of the tests. The
luajit test-suite provides many test cases. However, the VM cannot run some of them either due to missing
functionality, or because it takes to long to execute.
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Chapter 7

Professional issues

This project reuses the gc library which is an open source project available on GitHub. It also borrows a few
implementation details which are necessary to speed up the VM. While developing this project, I followed
the British Computer Society (BCS) code of conduct, especially the clause about third party rights. In the
source code, I made it clear if any code was borrowed from other projects by linking to the original repository
of the project, and I made sure to respect the licenses of those projects.

A lot of care has been taken to ensure that the project does not have have any security vulnerabilities.
Because this project builds a compiler and a VM it is important to ensure that attackers cannot exploit the
implementation in any way. All the limitations of the project have been disclosed in this report.
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Chapter 8

Challenges

One of the biggest challenges of this project was to design a bytecode representation of Lua. The opcodes used
in the bytecode were added incrementally, and some of their semantics were also changed during development.
For instance, in the beginning, it was not clear if there was a need for stack instructions, such as Push.
However, due to how function calls work, it was necessary to add instructions that modify the stack.

Another difficult problem was the upvalue generation. To implement this, it was necessary to create
dominator trees, and to come up with an algorithm that searches for symbols in order to decide whether they
are global symbols or upvalues.

A lot of effort was invested into the LuaVal system. The current system is not optimal, and its performance
is shown in chapter 9. The representation of the types that a LuaVal wraps was the most challenging part.
This is because it was necessary to understand how Rust represents different constructs, such as enums, or
fat pointers, in memory, and how different representations influence performance.

Tables are an essential part of the Lua language, and one of the main challenges was to design a data
structure which performs efficient string look-ups. However, it turned out that the algorithm developed in
the early stages of development did not work in certain cases. This section briefly describes the intuition of
the algorithm, as it shows how challenging it is to consider all corner cases.

Most Lua programs load global symbols from the ENV table. However, the compiler knows at compile-
time which symbols are loaded from ENV. To illustrate the following optimisation, consider the following Lua
program, and its bytecode representation.

x = 1

local y = x

Function 0 {

Ldi 0 0 0 # load 1 into register 0

Lds 2 0 0 # load string "x" into register 2

SetUpAttr 0 2 0 # ENV["x"] = 1

Lds 1 0 0 # load string "x" into register 1

GetUpAttr 1 0 1 # y = ENV["x"]

}

Figure 8.1: A simple Lua program, and its associated bytecode.

In figure 8.1, "x" is located at index 0 in the constant strings table. This means that there is a mapping
between index 0 and "x". The VM can associate to every LuaString an optional index, which represents the
index of the string in the constant table. When the Lds instruction is executed, the VM fetches the ith string
from the constant table, , where i is the value of the second operand of the Lds instruction, and stores it into
a register. Thus, the VM has access to both the string and the index, and can store them into a LuaString.
For the purpose of this example, consider a new type of table, StrTable, which has two members: an array
str attrs which has the size of the constant strings array, and a hashmap from LuaVal to LuaVal, called
attrs. The way the VM can perform faster string look-ups is to check if the underlying LuaString has an
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index or not. In the case it does not have an associated index, then the look-up is done via the attrs map.
However, if it does have an associated index, it means that the look-up can be done via str attrs array.
The reasoning behind this is that the index of a string in the constant table could be used to determine the
slot of its associated value. Moreover, the index can be thought of as the hash of the string. Although this
seems like a good optimisation, it does not work in some cases. Consider the following Lua listing:

Listing 8.1: Program which breaks the optimisation

1 t["ab"] = 1 -- stores ‘1‘ at index 0 in the ‘str_attrs‘ array

2 t["ab"] -- fetches ‘1‘ from index 0 of the ‘str_attrs‘ array

3 t["a".."b"] -- returns nil, and not 1

On line 1 of listing 8.1, "ab" is the first string in the constant table, thus has index 0 associated to it. Line
1 is translated by the VM to t.str attrs[0] = 1, based on the optimisation described above. However, on
line 3, "ab" is built from two different strings, thus it will not have an associated index even though it is part
of the constants table. Because the VM cannot find the associated index, it performs a look-up using attrs,
which doesn’t have an entry for "ab".
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Chapter 9

Critical evaluation and benchmarking

The project meets all of its function and non-functional requirements. The VM implements most features of
Lua 5.3, and can run a few benchmarks provided by the LuaJIT project.

9.1 The shortcomings of luacompiler

The luacompiler project approaches bytecode generation in a different way than other implementations.
PUC-Rio Lua, LuaJIT, and Luster have simple compilers which translate the parse tree into bytecode directly,
and only perform constant folding. These projects mostly focus on improving the execution speed of the VM
rather than on emitting the most efficient bytecode. The approach of luacompiler is different from the other
three implementations, as it compiles parse trees to bytecode in two phases.

The SSA form of the Lua IR makes it easier to perform optimisations such as constant folding and constant
propagation. Also, it is relatively easy to implement the Linear Scan [21] register allocation algorithm for an
SSA IR. However, the Lua IR has a few shortcomings which were also mentioned in chapter 5. Because of
how upvalues need to be handled at run-time, the compiler must emit additional Phi instructions to ensure
that different uses of the same variable are lowered to the same virtual register. An alternative intermediate
representation would make the implementation of the compiler easier to understand and to extend, as well
as more efficient.

Another shortcoming of the compiler is that it does not generate debugging symbols, which means run-
time errors can be difficult to debug. These have been omitted, because they were not included in the
functional requirements of the project.

Compile-time errors are not user-friendly. Most of the time, the compiler panics1 instead of returning an
error to the user. For this reason, compile-time errors are often difficult to fix.

9.2 The shortcomings of luavm

One of the main differences between luavm, and other Lua VMs is the way it implements function calls. In
Luster function calls are ‘stackless’, as described in chapter 2. The luavm crate handles Call instructions
recursively, which can impact the performance of recursive programs. Performance is influenced by the fact
that each recursive call creates a stack frame in the host language as well. Repeatedly creating and destroying
stack frames theoretically slows down the VM, as more CPU time will be dedicated to setting up frames,
rather than executing bytecode.

The LuaVal system has a few shortcomings as well. One of the main problems with the system is that
it requires two heap allocations to allocate a LuaObj, due to how Rust represents trait objects, and because
the data stored in LuaVal is constrained to 64 bits. A different approach would be to implement LuaVal as
an enum as shown in listing 9.1.

This approach removes the need for LuaObj and GcVal as the enumeration can have as many variants as
the VM needs. However, enums are not as space efficient because the Rust compiler allocates an additional

1A panic in Rust is similar to an abort.
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Listing 9.1: An alternative LuaVal representation.

enum LuaVal {

Int(i64),

LString(LuaString),

Table(UserTable),

...

}

machine word (64 bits) along with the data contained in the enum. This means that a LuaVal’s size would
become larger than 64 bits. A larger size means that fewer LuaVals are going to fit into the cache of the
CPU. This can lead to an increased number of cache misses, which negatively affects the performance of the
VM. Another shortcoming of the LuaVal system is its dependency on the gc crate. PUC-Rio Lua, LuaJIT,
and Luster implement their own specialised garbage collector. The gc crate does not allow objects that are
garbage collected to be mutated. As such, the user has to wrap objects into a structure called GcCell in
order to mutate their underlying data. This structure, as it is shown in section 9.3, decreases the performance
of the VM considerably. The VM could potentially be made faster by implementing its own GC, similar to
Luster.

Unlike PUC-Rio Lua, LuaJIT, and Luster, the UserTable does not implement the table array optimisa-
tion, which means that integer look-ups are much slower than in other VMs.

9.3 Benchmarks

The following section is going to focus on showing the performance of the luavm compared to that of PUC-
Rio Lua, LuaJIT, and Luster. The benchmarks were run on bencher10 which is a server provided by the
Software development team2. This machine can be used to benchmark more accurately the performance
of programs. The server runs a minimal Debian GNU/Linux instalation. Its hardware consists of an Intel
Xeon 3.7 GHz quad core processor with overclocking, and hyper-threading disabled, and 32 GB of RAM.
Every benchmark is run 30 times with each VM.

luavm PUC-Rio Lua LuaJIT Luster

fib(30) 1.2580±0.0056 0.0960±0.0028 0.0140±0.0014 0.3680±0.0028

fib iter(60) 0.0060±0.0005 0.0010±0.0000 0.0010±0.0000 0.0010±0.0000

bin-trees 0.0230±0.0028 0.0040±0.0000 0.0030±0.0000 −
nsieve 141m 54.334s 0.0360±0.0038 0.0090±0.0005 0.1680±0.0033

Table 9.1: Execution times (in s) of the VMs on four different benchmarks (reported with 99% confidence
intervals). Keys: ‘-’: the benchmark cannot be run with a particular VM. Note that luavm executes the
nsieve benchmark very slowly, thus its entry is measured in minutes.

As it can be seen in table 9.1, the luavm does not execute the benchmarks as fast as the other VMs.
As expected, LuaJIT outperforms every other VM on almost all benchmarks, expect on fib iter where it
performs just as well as PUC-Rio Lua, and Luster.

There are a couple of factors which can influence the performance of the whole system:

1. Redundant instructions in the bytecode

2. The recursive implementation of Call

3. The näıve implementation of table look-ups

2https://soft-dev.org/
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4. The garbage collector

5. The double pointer implementation of LuaObj and GcVal

All of these are equally likely to affect the performance, as such the following paragraphs describe in detail
which factors influence the performance of the VM on every benchmark. In order to better understand which
functions of the VM are executed the most, the benchmarks are run with valgrind, in particular with the
cachegrind tool. This tool gathers information about which functions were executed the most, thus giving
an idea of where the VM could be optimised.

9.3.1 Recursive fibonacci

This benchmark could be potentially influenced by all the factors mentioned above. The benchmark calls
the fibonacci function recursively, which means that there are a lot of Call instructions executed. Also,
because the function is declared as a global symbol, it means that before a Call instruction, the symbol is
loaded from ENV. Thus table look-ups, and table accesses might also slow down the VM. Valgrind is run on
a modified version of the benchmark, where the fibonacci function is called with the argument 10 instead of
30. The modification is necessary because programs running in valgrind are slower due to the profiling done
by the tool.

Figure 9.1: A visualisation of cachegrind ’s output for fibonacci.

Figure 9.2 shows the output of cachegrind for the modified fibonacci benchmark. The VM spends most
of its time allocating and freeing heap memory: int malloc, malloc, and int free. The most heap-heavy
operations that the VM does are: string, closure, and table creation, and string copies.

Listing 9.2 shows a subset of the instructions produced by luacompiler from the fibonacci source file. It
can be seen that the compiler emits an Lds of the same string multiple times per function. This means that
during every recursive call, the VM will create two Box<Box<LuaString>>, due to how Lds is implemented.
Box allocates memory on the heap, thus it is very likely that its implementation calls malloc 3. A nesting of
boxes means that there are at least two calls to malloc. Also, the implementation of Lds copies a string from
the constant string table, which also reallocates memory on the heap. This means that each Lds operation
produces 3 heap allocations, thus 6 heap allocations per function call. The running time can be improved in
two ways. First, the compiler could reuse the register which stores the string, instead of reloading it again
into another register. Manually removing the extra Lds in BcFunc 1, and running the benchmark again yields
a better result: 1.184 s. Emitting better bytecode improves the running time by 5%. Rerunning cachegrind
gives the same result, that there are a large number of heap allocations and deallocations. A second approach
to improving the running time is to try and remove the nested Boxes, which means that LuaVal needs to be
reworked.

3The malloc function allocates heap memory, and is part of libc.
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Listing 9.2: The bytecode of the fibonacci function.

BcFunc 0 {

Closure 0 1

Lds 3 0

SetUpAttr 0 3 0 # _ENV["fib"] = R(0)

Lds 1 0

GetUpAttr 1 0 1 # R(1) = _ENV["fib"]

...

}

BcFunc 1 {

...

Lds 7 0

GetUpAttr 7 0 7

...

Lds 11 0

GetUpAttr 11 0 11

...

}

9.3.2 Nsieve

The nsieve benchmark calculates the number of prime numbers up to a certain value, and stores them into a
dictionary. On this benchmark, the luavm performs very poorly. This benchmark was designed to test whether
integer look-ups are implemented efficiently. Because PUC-Rio Lua, LuaJIT, and Luster implement the table
array optimisation presented in chapter 2, they all execute the benchmark rapidly. However, theoretically,
not performing this optimisation should not hinder the ability of the VM to execute the benchmark in a
timely manner.

Figure 9.2: A visualisation of cachegrind ’s output for nsieve.

Figure 9.2 shows the output of cachegrind for a modified nsieve benchmark. This time the VM seems
to spend most of its time in UserTable::set attr, and in drop in place. It is expected that set attr is
executed many times, as the benchmark is supposed to test attribute stores.

In Rust, when an object goes out of scope, the language inserts a call to obj.drop(). The drop method
is similar to a destructor in C++, and it is used to clean up the object.

In order to better understand why the drop method is called so often, consider the implementation of
UserTable::set attr.

Line 4 of listing 9.3 hides a couple of important operations. The borrow mut method is used to access the
underlying data of a GcCell, and it returns a GcCellMutRef structure. This structure is a wrapper around
a reference to the hash table of the UserTable. The code then uses the insert method to update the hash
map. Once the new value is inserted into the map, the algorithm executes a GcCellMutRef.drop(). This is
where the implementation of the external gc crate influences negatively the performance of the VM. If the
hash map is not wrapped into a GcCell, then the benchmark runs in 0.872 s, however the VM now leaks
memory, and crashes upon exit.
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Listing 9.3: The implementation of set attr for UserTable.

1 impl GcVal for UserTable {

2 ...

3 fn set_attr(&self, attr: LuaVal, val: LuaVal) -> Result<(), LuaError> {

4 self.v.borrow_mut().insert(attr, val);

5 Ok(())

6 }

7 ...

8 }

9.3.3 Iterative fibonacci, and binary trees

In both of these cases, luavm is a few times slower than its counterparts. These two benchmarks are more
general benchmarks, and they test the overall performance of the VM. Note that Luster does not implement
a language feature used in bin trees, thus its entry is missing. The performance of luavm could be improved
by emitting better bytecode, and by optimising different components of the VM, such as the type system.
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Chapter 10

Conclusion

This project shows that is is possible to create a virtual machine for a dynamic language such as Lua in
Rust. In addition, this project proves the hypothesis that it is not possible to create an efficient interpreter
without a specialised garbage collector. Luster is able to run faster because it created its own garbage
collector. Chapter 9 showed how the gc crate negatively influences the run-time of the VM, by comparing
the execution time of luavm with PUC-Rio Lua, LuaJIT, and Luster, and by analysing which components
of the system are slowing the VM down the most.

10.1 Future work

The luavm crate can be extended in a few ways to improve its performance. First, the system needs a new
garbage collector, either one similar to the one developed by Luster, or a reimplementation of an Immix
garbage collector [22]. Other ways in which the VM could be improved include: adding support for the table
array optimisation, and removing extra heap allocations that are generated by the value system.

The luacompiler can be extended in many ways. Currently the compiler lacks a register allocation
algorihm, and also peforms lowering to bytecode very näıvely. Improving these two aspects about the compiler
should enable better bytecode emission, thus an improvement in the overall performance of the interpreter.
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