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Abstract

Any non-trivial program needs to dynamically allocate memory. In C++,
the new keyword is used to allocate memory on the heap. The compiler trans-
lates this keyword into a call to the standard function operator new, followed
by a call to constructor of the allocated type. In C++, operator new is imple-
mented using the standard C function malloc. The malloc function allocates
additional space, called metadata, which is used to store a structure that allows
the implementation to handle incoming allocation and deallocation requests
quickly. Every allocation contributes to the size of the metadata. This over-
head is negligible for large types, but for small objects it becomes a problem.
If a program allocates a large number of small objects, then the overheads of
malloc will occupy more space than the objects themselves.

The aim of this project is to create an efficient memory pool allocator, which
minimizes the memory overheads of small allocations. This allocator will also be
used to create a new implementation of operator new and operator delete

which is going to store small allocations in memory pools by default.
Memory pools can only reduce memory usage when a sufficiently large num-

ber of small allocations is made. Therefore it is also necessary to create a pro-
filing tool which will help decide if a memory pool might improve the memory
usage of a program.
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Chapter 1

Introduction

The aim of this report is to develop a framework for profiling and reducing
the memory usage of C++ programs. Chapter 2 introduces memory pools,
and other related concepts which help with understanding the implementation.
Chapter 4 shows two possible memory pool designs which can be implemented
as C++ allocators to achieve the goals of this project. Chapter 5 describes
the implementation details of the framework, and the reason why the allocator,
as described in chapter 4, is designed in such an unusual way. In order to
demonstrate that the allocators perform as expected, chapter 7 and 8 show how
the implementation compares to other popular memory pool allocators, and how
it performs when included as part of a larger system, such as the Popf planner.

1.1 Motivation

Memory pools have always been used to reduce the memory usage of programs
which allocate large numbers of small objects.

Cocos2d-x is a popular open-source library and game engine written in C++.
It is used by many developers to build highly-efficient games that can be run on
many platforms, including mobile phones. Games have high memory require-
ments, and mobile phones typically have less memory than other computer
systems. The library has a built-in memory pooling system. Every object has a
static Create method which places the object into a memory pool by default1.
This feature enables developers to focus on building the game itself without
having to worry about memory usage.

When building a game, the programmer must always use the Create method
instead of new. This can be very confusing to beginners, who are used to allo-
cating memory with new. The Create method is also responsible for managing
the pointer it returns, which means developers do not need to free the pointers.

There are also multiple general-purpose libraries that implement memory
pools such as boost [1] and MemoryPool [2]. Listing 1.1 shows how MemoryPool

1The method does other things as well, but such details are beyond the scope of this report.
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can be used to allocate integers.

Listing 1.1: Allocating two integers using MemoryPool

MemoryPool<int> p;

int x1 = p.allocate();

int x2 = p.allocate();

In order to use MemoryPool, it is necessary to use a MemoryPool instance
to allocate and deallocate memory.

The main goal of this project is to come up with a general-purpouse pool allo-
cator similar to boost and MemoryPool, that performs better than malloc when
allocting small objects. Another important goal is to reimplement operator

new and operator delete. The new allocator should minimize the memory
overheads of all allocations. In order to make the new implementation available
to programs, an injection mechanism must be developed as well. Its purpose is
to automatically insert the reimplemented operators into programs, such that
when they use new, the objects are placed into memory pools by default, simi-
larly to what Cocos2d-x does. Chapter 8 describes in detail why in some cases
the injection mechanism reduces the memory usage of programs, while in other
cases it increases the memory usage substantially.

1.2 Why C++?

C++ is a unique programming language, as it combines low-level features which
enable direct memory manipulation with high-level constructs, such as classes
or lambdas. The low-level features of C++ are very important in the context
of this project, because the allocators rely on manipulating memory to achieve
reduced memory usage, and quick allocation and deallocation times.

The language also allows operators, such as operator new to be overriden,
which makes the task of injecting memory pools into programs easier.

C++ is a very important and widely used programming language. A large
number of applications are implemented in C++, because of its high execution
speed and object-oriented features. Most large-scale applications could benefit
from using memory pools, but it is often infeasible to change an older code
base to allow objects to be created in pools. An automatic injection mechanism
would provide an easy way to integrate memory pools into existing programs.

8



Chapter 2

Background

This chapter describes a few important concepts which are used to design and
implement the allocators described in this report. It is important to understand
the memory layout of a process, and which parts of it can be improved. A
simplified malloc algorithm is presented in order to illustrate why memory
pools are important and useful. The concept of memory pools is also introduced,
but these are discussed in more detail in chapter 4. In chapter 5 an injection
mechanism implemented in LLVM is presented, thus it is necessary to describe
what LLVM is, and how it can be used in the context of this project.

2.1 The memory of a process

Before introducing the concept of memory pools, it is important to understand
the distinction between the different types of memory that a process uses.

The memory of a process is split into 5 parts: text, data, bss, heap and stack.
The text section is where the machine instructions of the program are stored.
All the data stored in this section is read-only. The data and bss sections
store global and static variables. The main difference between them is that
the data segment stores variables that have been initialized, and the bss stores
uninitialized variables.

2.1.1 The stack

This is the region of a process’ memory which is used to create stack frames.
The stack pointer is a register which holds the address of the top of the stack.
Whenever a function is called, a new stack frame is created by decreasing the
value of this pointer. This creates space for the function’s parameters and local
variables. When the function returns, the stack frame is destroyed by increasing
the value of the stack pointer. The programmer has no control over this region1.

1The alloca function can be used to allocate stack memory, but as soon as the function
which called alloca returns, the allocated region is deallocated. More information can be
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2.1.2 The heap

This is the memory area where dynamically allocated objects are stored. In C
and C++, the heap is managed by malloc, free, and realloc.

2.1.3 Improving memory usage

The memory layout of most segments cannot be improved at run-time. For
instance, the text, data, bss, and stack should not be manipulated, as there is
nothing users can do to improve their layout. The sizes of these sections are
determined at compile time. Thus, the compiler is responsible for optimizing
the memory usage of these regions.

The only segment left is the heap, which is managed by malloc and free.
Because both of these functions are loaded during the execution of a program,
that means it is possible to come up with a better heap allocation strategy, and
link it to the program in order to reduce the memory usage.

High addresses

Low addresses

Text

Data

bss

Heap

Stack

Figure 2.1: The memory of a process

Figure 2.1 shows the memory layout of a process. All segements have a fixed
size except the for the stack and the heap, whose lengths change during the

found at http://man7.org/linux/man-pages/man3/alloca.3.html.
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execution of the program.

2.2 Allocators

Allocators are used to allocate, deallocate, construct, and destruct objects of a
certain type [3]. In C++, allocators are used to implement containers such as
std::vector. Their responsibility is to allocate a number of contiguous objects of
a certain type, and to construct them.

This project involves creating an efficient memory pool allocator. Unfortu-
nately, due to the design of the implementation, the memory pools described
in this report are not compatible with the definition of a C++ allocator. This
is due to the fact that the implementation cannot allocate any number of con-
tiguous objects, which a C++ allocator must be able to do.

2.3 Heap allocation

In C++, the new keyword is used to allocate objects on the heap. The compiler
translates the code shown in listing 2.1 into the instructions shown in listing 2.2.

Listing 2.1: A simple heap allocation program.

new SomeObject(arg1, arg2);

Listing 2.2: The translation of listing 2.1 by a C++ compiler.

auto p = static_cast<SomeObject*>(::operator new(sizeof(SomeObject)));

p->SomeObject(arg1, arg2);

The actual memory allocation is performed by operator new. In the GNU
implementation of C++, operator new calls malloc in order to allocate mem-
ory on the heap.

In order to improve memory usage, it is important to first understand why
the default malloc implementation does not allocate memory optimally. The
first question to answer before attempting to create an efficient allocator is: how
does malloc work?

2.3.1 Memory Control Blocks

Memory Control Blocks (MCBs) are the building blocks of malloc. An MCB
is a structure which is used to partition the heap into memory blocks. A block
of memory is shown in figure 2.2.

11



MCB Block of memory

A region of heap memory

X X + 32 Y

Figure 2.2: An MCB followed by a block of memory.

MCBs are the nodes of a doubly linked list. The heap is divided into memory
regions. Each region is composed of an MCB, followed by a block of usable
memory. Two blocks are linked through their respective MCBs. MCBs also
keep track of the size of the block, and a flag which denotes if the block is
occupied or not. Listing 2.3 shows a C++ struct that implements an MCB.

Listing 2.3: The MCB structure.

struct MCB {

MCB *next, *previous; // the doubly linked list structure

size_t size; // the size of this block measured in bytes

bool isFree; // if the block is used or not

};

The MCB structure has a size of 32 bytes and is 8 bytes aligned. The
structure should technically occupy 25 bytes, but because the alignment is 8,
the size is padded with zeroes until the next multiple of the alignment is reached,
which is 32 in this case. The alignment of a structure is exaplined in detail in
section 2.5. The size of this structure is used in later sections to show the
overheads of malloc.

2.3.2 A simplified malloc algorithm

The initialization phase of the malloc algorithm uses system calls in order to
allocate heap memory for the process. The algorithm allocates 4 KiB of memory
(i.e. one page)2. Next, the algorithm creates an MCB at the start of the memory
block returned by the Operating System (OS).

The next and previous fields of the first MCB are set to nullptr, the size

field is set to 4 KiB − sizeof(MCB) = 4064, and isFree is set to true.
This phase is usually executed before the main function runs. Figure 2.3

show a representation of the state of malloc after the initialization phase.

2The actual malloc algorithm allocates more memory, but for simplicity, it is assumed that
the algorithm always allocates a page of memory.
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MCB Usable memory

next = nullptr

previous = nullptr

size = 4064

isFree = true

0 32 4096...

Figure 2.3: The state of malloc after the initialization phase.

To understand what happens next, consider the program shown in listing 2.4
which allocates an integer on the heap by using malloc.

Listing 2.4: An integer allocated with malloc.

int* x = static_cast<int*>(malloc(sizeof(int)));

The size of an integer is 4 bytes, which is why malloc will try to create a
block of size 4 and return it to the user. In order to satisfy the request, the
block that was created during the initialization phase is split into two distinct
blocks.

M1
size = 4

isFree = false

0 32 409636

Region returned to the user

M2
size = 4028

isFree = true

68
...

next

previous

Figure 2.4: The split memory block.

Figure 2.4 illustrates how malloc splits the initial block. A new MCB (M2 )
is created at the address located at 4 bytes after the first MCB (M1 ). The size
of M1 is set to 4, and it is no longer free. The size of M2 is set to 4028, because
that is how much usable memory is left. The next field of M1 is set to point
to MC2, and the previous field of MC2 will point to MC1. The remaining
fields remain set to their default values. After the block is split, malloc returns
a pointer to the new memory block of size 4, shown as a gray rectangle in
figure 2.4. In the case where the last available slot is not large enough to satisfy
the allocation request, the algorithm allocates a new block of memory, and links
it to the other blocks. This is done by using the initialization algorithm again
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to allocate a page of memory, but this new block is then linked to the other
blocks.

Deallocation works in a similar way, but blocks are merged instead of being
split. When free is called on a pointer, the MCB that is 32 bytes to the left
in memory sets its isFree member to true. If there is an adjacent MCB that
is also free, then the two MCBs are merged. If the integer from figure 2.4 is
deallocated, then the two MCBs are merged, and the memory block will look
like it did previously in figure 2.3.

2.3.3 Overheads of malloc

The malloc function wastes a lot of memory for small objects. The implemen-
tation starts with 4064 bytes of usable memory, and, after an integer allocation,
this number drops to 4028 bytes. For every integer allocation, an additional 32
bytes are used solely for storing MCBs. Ideally, these wasted bytes could be used
instead to allocate more integers. Although this is a problem when allocating
small objects, these overheads become negligible for larger allocations.

2.4 Memory pools

Memory pools provide a way to minimize the allocation overheads by grouping
allocations in a block of memory, also called a memory pool.

2.4.1 A pool of objects

A pool is a contiguous block of memory which is partitioned in such a way that
it can fit N objects of a certain type with little to no overheads. Pools can be
viewed as arrays. Figure 2.5 illustrates a memory pool for integers.

integer 1 integer 2 integer 3 integer N

0 4 8 12 (N-2)*4 (N-1)*4

...

Figure 2.5: A pool of N integers.

There are two issues that need to be addressed when designing a memory
pool. The first one is that there is no way to tell if a slot is free without using
an additional structure to store this information. The second issue is related to
what happens when there are no free slots left. There is also another problem
which is related to the alignment of the slots, but this is discussed in a later
section.
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2.5 Alignment

Each data type has an alignment. If a type has an alignment of N, it means
that any address that points to an object of this type must be divisible by N. If
objects are misaligned, then programs will run much slower [4]. One property
of the alignment of a pointer is that is it always a power of two. Another
important property is that if a pointer is 16 bytes aligned, then it is also 2,
4, and 8 bytes aligned as well3. One of the important optimizations described
in chapter 5 is based on the first property. It also worth mentioning that the
maximum alignment in C and C++ is 16 bytes4.

As an example, consider the structure shown in listing 2.5:

Listing 2.5: A Foo structure.

struct Foo {

int x; // alignment of 4

bool y; // alignment of 1

}; // alignment of 4 because we take the maximum of the alignments

The Foo struct has to be 4 bytes aligned, which means that any pointer to
a Foo object must be divisible by 4. For example, the address 0x00000004 is
a correctly aligned pointer to an object of type Foo, while 0x00000005 is not
because 5 mod 4 = 1. Consider a pool of Foo objects.

Foo 1 Foo 2 Foo 3 Foo N

0 8 16 32 (N-2)*8 (N-1)*8

...

Figure 2.6: Memory pool for Foo objects.

The red regions represent the padding of each Foo object. The padding is
necessary in order to properly align objects. It can also be viewed as lost or
unusable memory, but there is no efficient way around it. Foo objects require
at least 5 bytes of memory to store all their members5. Because Foo has an
alignment of 4, all Foo pointers must point to an address whose value is a
multiple of 4. The smallest multiple of 4 that is greater than 5 is 8. This means
that 3 bytes are lost due to padding.

Both memory pools, and malloc will waste some memory in order to align
objects properly.

3Because 2, 4 and 8 are divisors of 16.
4Users can set the alignment of a structure to be any power of two by using the alignas

keyword.
5sizeof(int) + sizeof(bool) = 5
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2.6 LLVM

LLVM6 is an infrastructure that can be used to implement programming lan-
guages. In order to implement a programming language, the user has to trans-
late their language into LLVM bytecode. The LLVM infrastructure is responsi-
ble for optimizing, and generating machine code out of the produced bytecode.

The LLVM bytecode is composed of a module. Each module has a number of
functions, and global variables. Functions are composed of multiple basic blocks
which are sets of instructions. The LLVM infrastructure can also be used as a
library to parse, and alter LLVM bytecode.

LLVM optimizes the bytecode by running passes. Each pass is responsible
for performing an optimization, for instance, a pass might be used to carry
out dead code elimination. There are many types of passes, for example, basic
block passes, which enable the user to modify the contents of basic blocks. It is
important to know that a pass is run on every basic block, and the code must
not modify any other basic blocks except for the one that is being processed.
In chapter 5, a basic block pass is used to modify call instructions such that
calls to new are replaced with calls to the allocator that is described in this
report. LLVM allows user defined passes to be run together with its own set of
optimization passes.

2.7 Relevant literature

The most important piece of literature is the malloc implementation by Doug
Lea [5]. This implementation differs from what was described in section 2.3.2
because it is more complicated. Conceptually it uses MCBs, but the next and
previous fields point to MCBs of the same size rather than to neighbouring
ones. This is because the algorithm allocates multiple linked lists for different
allocation sizes. For instance there are bins for objects that have a size that
is lower than 8, or lower than 256. This approach minimizes the overheads of
smaller objects from 32 bytes to somewhere around 8 bytes. The larger the
allocation is, the larger the overheads are [6].

There are several papers [7] and websites [8] which describe other memory
pool implementations, but the problem with them is that the user has little
to no control over the way objects are placed into pools. One paper describes
how memory pooling can be done at compile-time, but this project is focused
on a run-time pool allocator [7]. Other websites show how users can implement
memory pools for certain objects, but they do not describe a general approach
[8]. There are also a large number of memory pool implementations on GitHub.

In order to implement these memory pools as efficiently as possible, it is
important to understand how operators new and delete work, and also how
allocators are implemented. The GNU implementation of libstdc++ was one
of the most useful resources when developing the implementation described in
this report. It provided the source code of new and delete, which proved to

6https://llvm.org/
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be very useful, since one of the tasks of the project is to reimplement these two
operators.

Websites such as CppReference7 also provided useful information regarding
all the different types of new [9] and delete [10] operations, which needed to be
overriden in order to implement a fully-functional global memory pool allocator.

7http://en.cppreference.com/
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Chapter 3

Requirements

There are several requirements that the allocators, injection tools, and profiling
tools must meet. Some of these are related to their performance, while others
are concerned with their usability. How these requirements are met is described
in chapters 4, 5, and 7.

3.1 Performance requirements

In terms of performance, the allocators must meet the following conditions:

1. The allocation, and deallocation times need to be faster than malloc in
order to ensure that the allocators do not become the bottlenecks of the
programs that use them.

2. The metadata of allocations should be minimized. The malloc algorithm
has an 8 bytes overhead per small object. This means that the allocators
described in this report must not use more than 7 bytes of metadata per
object, because otherwise memory usage is not improved.

3.2 User requirements

The allocators should:

1. Be easy to use by providing a simple interface. This enables users to easily
integrate memory pools into their systems.

2. Come in the form of a shared or static library which can be linked with a
program to allow users to use the allocators.

The injection mechanism should:

1. Provide a way to allocate objects in pools without needing to modify the
system’s source code.
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2. Aim to reduce the memory usage of the program.

There are programs that might not allocate large numbers of small objects,
in which case, the pool allocators are not going to help reduce the memory
usage. A memory profiling tool must also be implemented in order to gather
this information. The tool should:

1. Collect allocation information, such as the number of times all types are
allocated, which functions allocate objects, the peak number of objects,
etc.

2. Store the information in a sensible format when the execution of the pro-
gram ends.

3. Provide a user iterface that displays the information in a table. Users of
the tool should be able to:

(a) Search for a certain type or function, and filter out the rest.

(b) Sort the data in ascending or descending order by type name, number
of objects allocated, function names, etc.
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Chapter 4

Design

This chapter describes two memory pool designs called BitPool and LinkedPool,
and the design of a global allocator which can be used as a replacement for new,
and delete.

4.1 Pool header

Both designs work very similarly, but there are some key differences between
them which are highlighted in later sections. In section 2.4.1, figure 2.5 shows
how a pool of integers might be stored in memory. Chapter 2 mentioned that
any memory pool implementation must be able to determine if a slot is empty or
not. The two designs solve this issue by allocating extra space at the beginning
of the memory block, and creating a structure called a pool header.

pool header integer 1 integer 2 integer N

0 X X+4 X+8 M-4 M

...

Figure 4.1: A pool header followed by N integers.

The pool header is responsible for keeping track of the availability of the
slots. The two designs use the pool header differently, as described in the
sections that follow. Note that the header in figure 4.1 depicts a header of a
generic pool implementation. The size of a header does not have predefined
size, because it depends on the implementation.
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4.2 Memory allocation

Before discussing how object pools can use the pool header to keep track of free
slots, it is necessary to describe how pools are created. Consider the following
UML diagram:

PoolAllocator

− poolOf(p : uint64) : TypedMemoryPool

TypedMemoryPool

+ startAddr : uint64

+ Create() : TypedMemoryPool
+ Delete()
− hasFreeSlot() : bool
− getFreeSlot() : uint64
− freeSlot(p : uint64)
− occupiedSlotsCount() : uint64

PoolHeader

1

*

1

1

Figure 4.2: UML diagram showing the general structure of a PoolAllocator.

Figure 4.2 shows the general structure of a memory pool allocator that uses
pool headers to track the state of slots. A PoolAllocator creates TypedMemo-
ryPools in which it stores a PoolHeader, and the slots of the pool. Both Bit-
Pool, and LinkedPool implement the hasFreeSlot, getFreeSlot, freeSlot,
and occupiedSlotCount methods from figure 4.2 differently. Their implemen-
tation is discussed in later sections. The other methods can be implemented
independently of any design choices. Each allocator must also define the data
that it stores in PoolHeader.

The Create method creates a block of memory in which the allocator can
store the header, and the slots. This method allocates a page of memory1, and
stores the start address of the block in the startAddr field. This is used to
allocate a pool of free slots when an allocation request is processed, and there
are no available slots. The Delete method deallocates the block of memory
which starts at the address specified by startAddr. These two methods can

1The size of a page is usually 4 KiBs = 4096 bytes.
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be implemented with malloc, and free. The malloc function can be used to
allocate a page of memory, which is later deallocated with free. When pools
become empty, they are deallocated in order to save memory.

The poolOf method takes a pointer as an argument, and returns the pool
from which the pointer originates. Listing 4.1 shows a general poolOf algorithm.

Listing 4.1: The poolOf algorithm.

Algorithm poolOf(p : uint64) : TypedMemoryPool
Let MP = the list of the allocated TypedMemoryPools
for each pool ∈ MP:

if p ≥ pool.startAddr ∧ p ≤ pool.startAddr + 4096:

return pool

return ∅

The poolOf algorithm loops through all the pools, and checks whether the
argument is in the range of addresses of one of the pools. The check is done
by comparing the argument with the start address, and the end address of each
pool. The size of a TypedMemoryPools is always 4 KiBs, thus the end address
is calculated by adding this number to the start address. The reason why the
size of a TypedMemoryPool is 4 KiBs is explained in chapter 5.

The allocate, and deallocate methods are implemented by using all the
methods provided by the PoolAllocator and TypedMemoryPool classes. List-
ings 4.2, and 4.3 describe general memory pool algorithms for allocation and
deallocation.

Listing 4.2: A general pool allocation algorithm.

Algorithm allocate : uint64
Let MP = list of the allocated TypedMemoryPools
for each pool ∈ MP:

if pool.hasFreeSlot():

return pool.getFreeSlot()

else:

P = TypedMemoryPool.Create()

MP = MP ∪ P

return P.getFreeSlot()

Listing 4.3: A general pool deallocation algorithm.

Algorithm deallocate(ptr : uint64)
Let MP = list of the allocated TypedMemoryPools;
P = poolOf(ptr)

P.freeSlot(ptr)

if P.occupiedSlotsCount() = 0

MP = MP \ P

P.Delete()
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4.3 BitPool

BitPool is a PoolAllocator that uses bits to represent the state of each slot of
a TypedMemoryPool. These bits are stored in the PoolHeader, along with a
counter which denotes the number of free slots in the pool. The first 8 bits of
the pool header encode the binary representation of the counter, and the next
N bits represent the state of the N slots of the memory pool.

8 integers

BitPool header

number of free slots slot bits

8 0000 0000

0 8 9 13 17 21 25 29 33 37 41

Figure 4.3: A bit pool of 8 free integer slots.

As described above, each bit represents the state of a slot. In figure 4.3, the
first high-order bit (i.e. counting from left to right) denotes the state of the first
slot, which is free in this case. The counter is set to 8 because there are 8 free
integer slots. Whenever a slot is allocated, the counter is decremented, and the
bit which represents the allocated slot is set to 1. Consider the case where slots
1, 3 and 8 are occupied.

8 integers

BitPool header

5 1010 0001

0 8 9 13 17 21 25 29 33 37 41

Figure 4.4: A bit pool where slots 2, 4, 5, 6, 7 are free.

In this example, the number of free slots is now 5, because only 5 of the slots
are free. The bits which represent the slots 1, 3, and 8 have all been set to 1,
while the rest of the bits remain equal to 0. If the third slot was freed, then the
slot bits would change from 1010 0001 to 1000 0001.

4.3.1 Pool header size

The counter can be stored as a size t, which has a size of 8 bytes. The state of
the slots is stored as a sequence of bits. In the example given in figure 4.3, there
are 8 integer slots, therefore 1 byte of memory is used to track the state of the
8 slots. In the case where there are 9 slots, the header must allocate space for
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2 bytes because memory is byte-addressable. As a result, the size of the header
depends on the type that is stored in the pool.

4.3.2 Implementing the PoolAllocator interface

hasFreeSlot

This method checks whether the counter of a PoolHeader is greater than 0, and
returns the result.

getFreeSlot

BitPool looks for a bit that is set to 0, changes the value to 1, and returns the
address of the slot which corresponds to the bit. It is possible to determine the
address of the slot that needs to be returned by using the following formula:

address = PoolHeaderSize + sizeof(Type) ∗ bitPos (4.1)

where Type is the type of data stored in the memory pool, and bitPos is the
position of the bit in the sequence of slot bits. Once the address is calculated,
it can be returned to the user.

freeSlot

This method sets the availability of a slot to free. The implementation finds the
bit which corresponds to the slot that is being freed, and sets it to 0. This can
be done by extracting bitPos from equation 4.1. Users can no longer use slots
after they are freed.

positionOfTheBit =
addrOfSlot− PoolHeaderSize

sizeof(Type)

occupiedSlotsCount

The header can be used to implement this method. The counter field denotes the
number of free slots in a pool. The number of occupied slots can be calculated
by subtracting the counter from the total number of slots.

4.4 LinkedPool

The main difference between LinkedPool and BitPool is the way the two im-
plementations keep track of free slots. Unlike BitPool, LinkedPool keeps track
of free slots using a linked list. Many pool implementations [1, 2] use this ap-
proach, but this design does it in an unusual way. Listing 4.4 below describes
how a linked list node is structured.
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Listing 4.4: A linked list node.

struct Node {

Node* next;

}; // size 8, alignment 8

A Node has a pointer to the next node, and does not keep track of any
other information. Each TypedMemoryPool has its own linked list, similarly to
BitPool where every pool kepps track of slot bits. The PoolHeader in this case
keeps track of the number of occupied slots, and the head of the linked list.

4.4.1 The hidden linked list

The linked list structure is supposed to keep track of all slots that are free. A
node is creatd for each free slot, and is inserted into the list. Searching for a free
slot involves returning the next member of the head of the linked list, which
is stored in the header. Although a Node does not keep track of anything else
other than the next element of the list, LinkedPool must be able to retrieve
the address of the slot represented by the node. During the initialization of
the PoolHeader, the allocator creates a Node object at the start address of each
slot, and links it to the list. This is the reason why this linked list is said to be
hidden. Consider the LinkedPool for objects of size 16 show in figure 4.5. The
gray rectangles denote a linked list node, and the arrows show how the nodes
are linked.

LinkedPool header

number of occupied slots Linked list head

0

0 8 16 32 48 64 80

free slot

linked list node

Figure 4.5: A linked pool which contains four free slots.

As a further explanation, the first slot starts at byte 16. Thus, during the
initialization phase, LinkedPool creates a linked list node at that address, and
links it to the Node starting at byte 32. Because nodes are created in this way,
head.next encodes two things: whether there is a free slot in the list, and the
address of the slot.
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Consider the case where slots 1 and 4 are occupied.

linked pool header

2

0 8 16 32 48 64 80

Figure 4.6: A linked pool where slots 2 and 3 are free.

In figure 4.6, the blue regions are occupied slots. Note that when all slots
are occupied, the linked list is empty2. Also, the head of the list, which is part
of the pool header, always points to a free slot, or a nullptr, if there are none.
The number of occupied slots, which in the example from figure 4.6 is 2, is also
recorded in the PoolHeader. When all slots are full, the head points to nullptr.
When a slot is freed, a Node object is created at the beginning of the freed slot.
This new Node is inserted between head, and head.next. Consider the case
where the fourth slot is freed.

1

0 8 16 32 48 64 80

Figure 4.7: A linked pool after the fourth slot is freed.

Figure 4.7 shows that the linked list node that was created in the fourth slot
was inserted after the head, between head and head.next.

4.4.2 Pool header size

The size of the PoolHeader is always 16 bytes, as shown in listing 4.5.

Listing 4.5: The LinkedPoolHeader struct.

struct LinkedPoolHeader {

size_t occupiedSlots; // 8 bytes

Node head; // 8 bytes

}; // 16 bytes in total

In this case, the PoolHeader has a constant size, which is independent of the
type of objects stored in the pool.

2Except for the head of the list which is always part of the pool header.
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4.4.3 Implementing the PoolAllocator interface

hasFreeSlot

This method checks whether head.next is a nullptr or not, and returns the
result.

getFreeSlot

The address of a free slot is always stored in the next field of the head of the
linked list. Thus, this can be implemented by returning head.next.

freeSlot

The implementation of this function is best described with an algorithm which
is shown in listing 4.6.

Listing 4.6: The algorithm of the freeSlot function

Algorithm freeSlot(ptr: uint64)

N = create a new Node at the address ptr

if head.next exists:

N.next = head.next->next;

head.next = N;

A new node is create at the address of the slot that is freed, then it is inserted
after the head of the linked list.

occupiedSlotsCount

This method is implemented by returning the counter of the header.

4.5 Comparing BitPool and LinkedPool

Both designs can be used to implement a memory pool allocator. This sec-
tion compares the two approaches in terms of memory overheads and ease of
implementation.

4.5.1 Overheads and alignment

Both implementations have to keep track of free slots through a PoolHeader.
This header contains a counter which denotes the number of free slots in the
case of BitPool, or occupied slots in the case of LinkedPool. In the case of Bit-
Pool, the header contains a bit for each slot, while LinkedPool stores the head of
a linked list. Section 4.2 specified that malloc would be used to allocate pages
of memory. Both implementations allocate a page of memory for a TypedMem-
oryPool, in which they store the header, and the slots. Therefore, the number
of slots is determined by the size of the header. If the header is large, then
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there si less space to store pool slots. In order to decide which pool is easier
to implement, but also more efficient, it is only necessary to compare the two
types of headers.

The size of a LinkedPool header is always 16 bytes. The two headers are
equal if the slot bits occupy 8 bytes. This means that the BitPool header can
track the state of at most 64 slots. If a pool is a page in size, this means that
there are 4080 usable bytes which can be used to allocate slots. The remaining
memory can be partitioned into 64 slots of size 63, as seen in the equation below.

⌊
4096 − 16

64

⌋
= 63

Thus, for objects of size 63, both implementations have the same overheads
per object, because they have headers of the same size. The following equations
show how the overheads can be calculated.

P = 4096; the size of a TypedMemoryPool

H = 16; header size

R = P −H = 4080; usable memory

S = 63; the size of a slot

N =

⌊
R

S

⌋
= 64 slots;

U = R−N ∗ S = 4080 − 4032 = 48; unusable memory

O =
U + H

N
=

64

64
= 1 byte; overhead per object

Usable memory (R)

TypedMemoryPool (P)

PoolHeader (H)

0 16 4048 4096

Slots (N * S) U

Figure 4.8: A pool with slots of size 63 bytes.

The overhead per object is 1 byte which is a lot smaller than the overhead
of malloc which is 8 bytes in this case.

Before analyzing the overheads of memory pools for objects of size greater
and smaller than 63, there are a few issues that need to be addressed. LinkedPool
has one obvious shortcoming. For objects whose size is less than 8 bytes, the
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implementation must create slots of 8 bytes in size. This is because the size of
a Node is 8 bytes. In order to initialize a linked list node in all free slots, each
slot must be at least 8 bytes in size. This means that memory is wasted for
pools of a type whose size is smaller than 8 bytes.

Another issue to consider is the alignment of the pointers returned by the
PoolAllocator. Slots must be aligned and padded properly based on the type
stored in the pool. The first slot of a LinkedPool is always 16 bytes aligned,
because the header has a size of 16 bytes, and, therefore, the first slot starts at
an address divisible by 16. BitPool ’s header on the other hand must be aligned
and padded such that the first slot is correctly aligned. The other slots are
padded if and only if the size of the slot is not a multiple of the alignment. If
the size of an object is 24, but its alignment is 16, then slots must be padded
until they reach a size of 32 bytes. In this case, the first slot starts at byte 16,
the second slot at 32 + 16 bytes, and so on.

Consider a type whose size is 88 bytes, which is greater than 63. A Linked-

Pool can store
⌊
(4096−16)

88

⌋
= 46 objects of this type. Because 4080 mod 88 = 32,

this means that the pool wastes another 32 bytes in addition to the 16 bytes
required to store the header. This is because the remaining memory cannot
be split perfectly into slots of size 88. The total amount of wasted memory is
therefore 48 bytes, 16 bytes for the header, and another 32 bytes that are left
over from partitioning the memory into slots. The total amount of overhead per
object is:

O =
48

S
= 1.04 bytes;

S =

⌊
4080

88

⌋
; the number of slots

This is also less than the overhead of malloc. Because the size is a multiple
of 8, this means that the slots are 8 bytes aligned. If this type needs to be
16 bytes aligned, then the slot size will be padded until it reaches a size of 96
bytes, which is a multiple of 16. In this example, if the alignment is 16, a lot
of memory is wasted. Each slot is padded with 8 bytes, which means that the
overhead of an object is at least 8 bytes.

For the type described above, BitPool can store 46 slots as well. The header
in this case is 8 bytes + 46 bits to represent the 46 slots. The 46 bits can be
represented by using 6 bytes, which is why the total size is 14 bytes. If the type
has an alignment greater than 2, the header must be padded. If the type is 16
bytes aligned, then BitPool will also waste at least 8 bytes per object, due to
padding.

Now consider a type whose size is less than 63 bytes. For example, a type
whose size is 34 bytes may need to be stored in one of the two memory pools
described in this report. LinkedPool allocates 120 slots, and the overheads per
object are 0.26 bytes3. On the other hand, BitPool can only allocate 119 slots,

3Assuming an alignment of 2, which means slot sizes are 34 bytes in size.
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with a header size of 23 bytes. The header must be padded in this case if the
alignment of the type is greater than 1. If the alignment is 2, 4 or 8, the header
must be padded until the slot size reaches 24 bytes. The pool wastes another
26 bytes due to the size of the type not dividing the usable memory perfectly,
therefore it has an overhead of 0.42 bytes per object. If the alignment of the
type is 16, then in both cases the slot size becomes 48 bytes due to padding.

Consider the case where a pool of integers is created. BitPool can create
990 slots, and each integer will have an overhead of 0.13 bytes. Because of the
issue mentioned above, LinkedPool can only allocate 510 slots, with an overhead
of 4.03 bytes per integer. In this case, the linked pool allocator has a higher
overhead per object than BitPool, however its overheads are lower than the 8
byte overhead of malloc.

4.5.2 Time complexity

For objects of any size, the two implementations have similar overheads, except
for sizes of less than 8 bytes, where BitPool has smaller overheads per object
than LinkedPool. However, it is also important to compare the two allocators
based on the complexity of the operations defined in section 4.2.

Both allocators implement the following the functions hasFreeSlot, freeSlot,
and occupiedSlotsCount in constant time.

The two designs share the implementation of the poolOf function, which runs
in O(n). The main difference between the two allocators is the implementation
of the getFreeSlot operation.

The linked pool allocator implements getFreeSlot in constant time by sim-
ply returning head.next. BitPool, on the other, hand implements this operation
in O(S) time, where S is the number of slots of the memory pool. This is be-
cause the implementation has to look for a bit that is set to 0. Thus, in the
worst case, it has to check all bit slots.

4.5.3 Conclusion

Both allocators can be used to implement memory pools. The implementation
of BitPool is not described in chapter 5. This is due to the fact that the design
of LinkedPool can be translated more easily to a high-level language such as
C++. This is because the slot bits are harder to implement than the hidden
linked list. Another reason why LinkedPool is implemented instead of BitPool is
because the functions described in section 4.2 have a better worst case running
time in the case of LinkedPool. Even though LinkedPool wastes more space than
BitPool on types whose size is smaller than 8 bytes, allocations of such sizes are
rare in large systems.
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4.6 A custom operator new and delete

This section describes the design of an allocator that can replace the implemen-
tation of operator new and operator delete. The design of LinkedPool will
play an important role in implementing a replacement for these two operators.

One thing to note is that the pool allocators described in section 4.2 cannot
be used for types that occupy a lot of memory. This is due to the fact that a
TypedMemoryPool is always limited to a page in size. Therefore, objects that
are large will not fit, or will cause lots of memory to be wasted. Consider a
type whose size is 3000 bytes. LinkedPool can only allocate a single slot for
this type, and, therefore, there is a loss of 1086 bytes, which is very memory
inneficient. The malloc function can satisfy this allocation by only wasting 32
bytes of memory. This observation is used when designing the new allocator.

4.7 Custom new and delete

The custom allocator works by combining malloc and LinkedPool. When a
small allocation is processed, LinkedPool is used to process the request. When
the allocation size is large, malloc is used is used to satisfy the request. The
name of this allocator is CustomNew. Consider the UML diagram of the custom
allocator.

CustomNew LinkedPool

1 16

Figure 4.9: UML diagram showing the structure of CustomNew.

CustomNew keeps track of 16 LinkedPools. The reason why there are 16
LinkedPools associated to CustomNew is explained in chapter 7.

In this section, LinkedPools are considered to be typeless. Pools are created
for objects of a particular size, as opposed to a particular type. For instance a
LinkedPool of size 16 denotes that each slot has a size of 16 bytes. The user of
the pool can store any type in the slots returned by the allocator as long as the
size of the type does not exceed 16 bytes.

The reason why pools are typeless is because operator new does not keep
track of the type, only the size of the allocation. This operator needs to be able
to allocate memory for any size that can fit into a size t (i.e. 64 bits). The
main requirement of CustomNew is to waste less memory than malloc, while
performing allocation and deallocation just as quickly. Earlier it was mentioned
that LinkedPool has large overheads for larger types. Therefore, the first step
is to decide for which sizes malloc will be used instead of LinkedPool.

Listing 4.7: An algorithm for allocating an object using CustomNew
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Algorithm allocate:

Let size = size of allocation

if size > threshold:

use malloc
else:

use LinkedPool

The threshold variable ensures that LinkedPool is only used for small al-
locations where it outperforms malloc. The value of the threshold has been
determined through observation.

The main design issue is to determine how LinkedPool is going to be used
when the size is smaller than the value of the threshold. Assume that the value
of the threshold is M . One design choice might involve creating M LinkedPool
allocators. The first allocator will deal with allocations of size 1, the second
one with allocations of size 2, and so on until the M th allocator which will be
able to allocate objects of size M . This design sounds reasonable, but it has
one serious issue. A program might allocate 5 objects of size 8, 800 objects of
size 64, and 3 objects of size 16. The CustomNew allocator is not going to be
able to save any memory. This is because the allocator will allocate 3 pages of
memory, one for the slots of size 8, one for slots of size 16, and another one for
slots of size 64. In these pages, only a few slots are going to become occupied
throughout the execution of the program, which means that a lot of memory
will be wasted due to unoccupied slots. These free slots cannot be deallocated
because they are part of pools which still contain objects that are in use.

In the general case, it might be the case that some objects are allocated very
often, while others are allocated just a few times. Consider another design choice
where CustomNew allocates M

8 LinkedPools instead of M . Each LinkedPool will
have a size that is a multiple of 8, where first linked pool allocator will have a
size of 8, the second one a size of 16, and so on. When an allocation that is
smaller or equal to 8 bytes is processed, it will be allocated a slot in the first
LinkedPool, whose size is 8. This means that all allocations that are smaller
than the threshold will be placed into a pool of size S, where S is the size of
the allocation rounded to the next multiple of 8.

This design has the same issue as before, but it tries to group similar alloca-
tion sizes into a common pool to reduce the number of free slots that are never
going to become occupied. Consider the example where a program allocates an
integer (size 4), a character (size 1), and a double (size 8). In the first case, the
pool allocators for sizes 1, 4 and 8 are all going to allocate a TypedMemoryPool.
In these memory pools, only 1 slot is going to be occupied, the other 509 will be
free4. So this program is wasting 509 ∗ 8 = 4072 bytes per memory pool, which
is 12216 bytes in total. The malloc function, on the other hand, only wastes 24
bytes. The new design is going to group these 3 allocations into a memory pool
of size 8, therefore this particular implementation will only waste 4056 bytes5.

4 4096−16
8

total slots in pools of size 1, 4 and 8.
5507 free slots, each slot occupies 8 bytes.
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This is still worse than malloc, but a lot better than before.
Another issue with the new design is that because allocations are grouped,

objects that are smaller than the size of the pool are not going to use all the
bytes of the slot that was allocated to them. Consider a pool of size 8. Allocating
510 objects of size 1 means that 7 bytes per slot are wasted. malloc, on the
other hand, wastes 8 bytes per small allocation. The overheads are still smaller,
thus the requirement that CustomNew should waste less than malloc still holds.
This design of CustomNew should be able to amortize all the overheads based on
the following assumption: sizes are usually multiples of the alignment, and most
objects have an alignment of 8 bytes, therefore most objects will have a size that
is divisible by 8 and will use all the bytes provided by the linked pool allocator.
Some allocations are still going to waste bytes, but overall, CustomNew should
waste less memory than malloc.

It is necessary to also provide a deallocation algorithm. In C++, operator
delete frees the pointer given with free. There is no implicit way of knowing if
a pointer was allocated through malloc or through a LinkedPool. The algorithm
for deallocation is as follows:

Listing 4.8: A decallotion algorithm for CustomNew

Algorithm deallocate(ptr):

Let ptr = the pointer that is deallocated

if wasMalloced(ptr):

free(ptr);

else:

pool = LinkedPoolOf(ptr);

pool.deallocate(ptr);

In order to implement the wasMalloced function, the implementation must
keep a list6 of all pointers that were returned by malloc. The reason why these
pointers are tracked, and not those allocated through LinkedPool, is because
large allocations are not as common as small allocations. Tracking only large
allocations will result in a list that has a smaller size, thus searching can be
performed faster.

The operation LinkedPoolOf is described in chapter 5, because it is very
implementation specific.

6Or other containers that might be suitable.
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Chapter 5

Implementation

This chapter describes the implementation of LinkedPool and CustomNew.
Because CustomNew is based on LinkedPool, this chapter also describes sev-

eral optimizations that can make the implementation of the LinkedPool allocator
perform better.

5.1 LinkedPool

The LinkedPool allocator is responsible for managing MemoryPools of a certain
type. Since LinkedPool is always associated with the type of data it contains,
it is implemented as a template class.

Listing 5.1: The LinkedPool class

template<typename T>

class LinkedPool {

public:

void* allocate();

void deallocate(void* t_ptr);

private:

std::set<void*> m_freePools;

std::mutex m_poolLock;

size_t m_headerPadding;

size_t m_slotSize;

};

Listing 5.1 shows the interface of the LinkedPool allocator. This allocator
has two methods which are used to allocate and deallocate memory for some
type T.
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5.1.1 Allocation

A general pool allocation algorithm was presented in listing 4.2. Listing 5.2
shows how this high-level description is translated into C++.

Listing 5.2: The implementation of the allocate method.

1 template<typename T>

2 void* LinkedPool<T>::allocate() {

3 m_poolLock.lock();

4 // look for a pool that has a free slot

5 if (m_freePools.size() != 0) {

6 // the first pool in set must have a free slot

7 return nextFree(*m_freePools.begin());

8 } else {

9 // allocate a new page of memory because there are no free pool

10 // slots left

11 Pool pool = aligned_alloc(getPageSize(), getPageSize());

12 constructPoolHeader(pool);

13 m_freePools.insert(pool);

14 return nextFree(pool);

15 }

16 }

The m poolLock member variable is used to ensure thread safety. The
m freePools set models the one-to-many relationship between PoolAllocator
and TypedMemoryPool. This set keeps track of all pools that have at least one
free slot. Whenever pools become full, they are removed from the set. Please
note that Pool on line 11 is just an alias for void*.

Lines 5-7 handle the case when there is a free slot in one of the memory
pools. The nextFree method returns a free slot from the pool it receives as an
argument.

Lines 11-14 deal with the case when a new pool must be allocated. The
aligned alloc function is used to allocate a page of memory that is page
aligned1. The reason why it needs to be page aligned is described in detail
in section 5.1.2. Line 12 initializes the new memory pool, by creating the pool
header, and the empty slots. After the initialization, the freshly created memory
pool is added to the set of pools that have free slots.

constructPoolHeader

This method creates the pool header, and initializes the hidden linked list in
the pool it receives as an argument.

Listing 5.3: The implementation of the constructPoolHeader method.

1 struct PoolHeader {

2 size_t occupiedSlots;

1Aligned at the start of some page of memory.
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3 Node head;

4 };

5

6 ...

7

8 template<typename T>

9 void LinkedPool<T>::constructPoolHeader(Pool t_ptr) {

10 auto header = new (t_ptr) PoolHeader();

11 auto first = reinterpret_cast<char*>(header + 1);

12 first += m_headerPadding;

13 header->head.next = reinterpret_cast<Node*>(first);

14 for (size_t i = 0; i < m_poolSize - 1; ++i) {

15 auto node = new (first) Node();

16 first += m_slotSize;

17 node->next = reinterpret_cast<Node*>(first);

18 }

19 new (first) Node();

20 }

In listing 5.3, lines 1-4 define the pool header of the linked pool, and lines
9-20 implement the initialization of the pool. Line 10 creates the pool header
at the beginning of the pool. Lines 11-13 initialize the head of the linked list by
making it point to the first pool slot. At lines 14-19, a Node object is created
at the beginning of each pool slot, and is added to the linked list.

nextFree

The nextFree method returns an empty slot from a pool, and updates the state
of the header. When the pool becomes fully occupied, this method also removes
the pool from the m freePools set.

Listing 5.4: The implementation of the nextFree method.

1 template<typename T>

2 void* LinkedPool<T>::nextFree(Pool t_ptr) {

3 auto header = reinterpret_cast<PoolHeader*>(t_ptr);

4 Node& head = header->head;

5 void* toReturn = head.next;

6 if (head.next) {

7 head.next = head.next->next;

8 // if the pool becomes full, don’t consider it in the list

9 // of pools that have some free slots

10 if (++(header->occupiedSlots) == m_poolSize) {

11 m_freePools.remove(t_ptr);

12 }

13 }

14 m_poolLock.unlock();

15 return toReturn;

16 }
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Listing 5.4 shows the implementation of the nextFree method. Lines 6-13
remove the free slot from the linked list, because it is no longer available. The
number of occupied slots is increased by one, which means care must be taken
to ensure that the pool is no longer considered to be part of the m freePools

set, if it becomes fully occupied. Line 14 ensures the lock is released, because
the lock is always acquired before nextFree is called. For instance, allocate
acquires the lock before calling nextFree.

5.1.2 Deallocation

Before translating listing 4.3 into C++ code, it is important to describe how
the poolOf function is implemented. A potential design of this method was
described in section 4.2. The design has a worst-case running time of O(n),
where n is the number of TypedMemoryPools allocated by PoolAllocator. In
order for this implementation to match the speed of malloc, this operation
would need to happen in constant time. In section 5.1.1, it was specified that
pools are page aligned. This means that the start address of any given pool has
its first 3 low-order hexadecimal digits equal to 0. Consider a pool whose start
address is 0x12345000. Every slot of this pool will have an address in the range
[0x12345000, 0x12346000). This means that, to obtain the pool a particular
pointer belongs to, the first 3 low-order hexadecimal digits of the pointer need
to be set to 0. The new address will always represent the pool of the given
pointer, if and only if the pointer was allocated with LinkedPool.

Listing 5.5 shows the implementation of the pool deallocation algorithm.

Listing 5.5: The implementation of the deallocate method.

1 template<typename T>

2 void LinkedPool<T>::deallocate(void* t_ptr) {

3 // get the pool of t_ptr

4 auto pool = reinterpret_cast<PoolHeader*>(

5 reinterpret_cast<size_t>(t_ptr) & getPoolMask()

6 );

7 m_poolLock.lock();

8 // the last slot was deallocated => free the page

9 if (pool->occupiedSlots == 1) {

10 m_freePools.remove(pool);

11 free(pool);

12 } else {

13 auto newNodeG = new (t_ptr) Node();

14 // update nodes to point to the newly create Node

15 Node& head = pool->head;

16 newNodeG->next = head.next;

17 head.next = newNodeG;

18 // the pool is not full, therefore add it to the list of pools

19 // that have free slots

20 if (--pool->occupiedSlots == m_poolSize - 1) {

21 m_freePools.insert(pool);
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22 }

23 }

24 m_poolLock.unlock();

25 }

Lines 4-6 retrieve the pool of the given pointer in constant time. If all
the slots in the pool become free, the memory block that was allocated with
aligned alloc is freed, and the pool is removed from the set. This is imple-
mented at lines 9-11. At lines 13-22, a new Node is created at the beginning
of the slot that is being deallocated, and it is inserted after the head of the
linked list. If a pool is fully occupied, and one of its slots becomes free, the
implementation adds the pool back into the set of pools that have free slots.

5.2 Improvements and optimizations

5.2.1 avl tree

In C++ std::set is implemented using Red Black Trees [11]. There is a lot of
debate on whether Red Black Trees are better than AVL trees or not [12, 13]. To
decide which implementation performs better, it is necessary to benchmark two
different LinkedPool implementations, one of which uses std::set, and another
one which uses a highly performant AVL tree implementation called avl tree.

5.2.2 light lock and LMLock

An external library provides the light lock class which is a very fast mutex
implementation for X86 systems. This mutex is a lot faster2 than std::mutex.
In C++ it is possible to check the architecture of the system at compile time
using the C preprocessor. The LMLock class was created as part of this project
in order to ensure that the allocators are thread safe on any system. If a
program that uses LinkedPool is compiled for an architecture other than X86,
it should still remain thread safe. This is done by falling back to std::mutex
in those cases. LMLock provides a mutex that on X86 systems uses light lock,
and on other systems uses std::mutex. The locking mechanism is decided at
compile-time based on the architecture of the target system.

Listing 5.6: The interface of LMLock.

class LMLock {

public:

void lock();

void unlock();

private:

#ifdef __x86_64

light_lock_t m_lock;

#else

2The speed-up can be seen in the running time of the benchmarks.
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std::mutex m_lock;

#endif

};

Listing 5.6 shows the interface of LMLock. This class can be used with
constructs such as std::unique lock, because it implements the interface of a
lock. The implementation can be found in the appendix in listing B.44.

5.2.3 Caching pools

Whenever a slot is allocated or deallocated from a pool P, P is cached, and
saved into a member variable. On subsequent allocations, P will be used to
satisfy the requests.

This optimization is based on the fact that accessing pools may cause page
faults. Page faults are very slow, and if these happen frequently, the programs
are slowed down considerably. When there is page fault, the page is loaded
into main memory, but another page, called the victim, is ‘evicted’. The OS
is responsible for choosing the victim page. Usually, the OS chooses the least
recently used page as a victim. This means that when a page fault happens,
the recently retrieved page has a lower chance of being evicted. Because pools
might cause page faults, it is a good idea to cache pools that have recently been
accessed. This ensures that when another allocation request is processed, the
slot will be allocated in one of the cached pools which is known to be in memory,
and not on disk. Allocating slots from other pools could cause more page faults.

5.2.4 Benchmarks

Tables 5.1, and 5.2 show how the running time improves after implementing the
three optimizations mentioned above. All benchmarks allocate 1,000,000 objects
of size 24, and record the allocation and deallocation times of LinkedPool.

Benchmark LinkedPool + avl tree + LMPool + caching
normal 307.77 309.27 294.92 196.52

specified 167.73 170.74 124.97 116.74
random 307.54 309.45 294.97 197.70
random2 439.96 461.07 356.35 333.59

worst 308.73 307.20 300.66 222.84

Table 5.1: Allocation times of all implementations in ms.
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Benchmark LinkedPool + avl tree + LMPool + caching
normal 307.14 296.35 196.06 194.14

specified 159.59 159.11 104.93 106.15
random 2544.70 2556.07 1718.47 1657.32
random2 4093.86 4107.36 3749.97 3741.15

worst 1511.24 1484.34 1572.57 1578.27

Table 5.2: Deallocation times of all implementations in ms.

Tables 5.1 and 5.2 show that the difference between std::set, and avl tree is
negligible.

LMLock speeds up deallocation considerably. It also improves allocation
speed, but not by a large margin.

Caching on the other hand, when combined with the other two optimizations,
provides a great overall speed-up. The reason why LinkedPool uses avl tree is
because it provides easy access to the root of the tree in constant time, while
std::set does not provide this operation.

5.3 Custom new

The CustomNew allocator provides two functions, namely custom new and
custom delete, which are used to replace operator new and operator delete.

Listing 5.7: The interface of the CustomNew allocator.

void* custom_new_no_throw(size_t t_size,

size_t t_alignment=alignof(max_align_t));

void* custom_new(size_t t_size,

size_t t_alignment=alignof(max_align_t));

void custom_delete(void* t_ptr) noexcept;

Listing 5.7 shows the declarations of the functions that are used to replace
new and delete. In C++, operator new throws std::bad alloc when an al-
location fails. The operator new function can also return a nullptr when
allocation fails, if the user provides the std::no throw argument to new. This is
the reason why the interface provides two custom new functions.

Before showing the implementation details, it is important to define some
classes that will help implement the specifications of this allocator.

In section 4.7, it was mentioned that pools are considered typeless. Linked-
Pool is a template class, so it is not typeless. Therefore, it is necessary to create
another allocator, GlobalLinkedPool, which is going to satisfy this requirement.
The two main differences between LinkedPool and GlobalLinkedPool are that
the latter has a constructor which takes the desired size and alignment as pa-
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rameters, and that it records extra information in the pool header. The former
uses the sizeof and alignof operators on the template parameter to get the
size and the alignment of the type. The header of each pool created by Glob-
alLinkedPool also keeps track of the slot size, thus making the header 24 bytes
long.

In order to model the one-to-many relationship from figure 4.9, a new class
called GlobalPools is introduced. This class keeps track of 16 GlobalLinkedPools,
and its interface is given in listing 5.8.

Listing 5.8: The interface of the GlobalPools class.

1 class GlobalPools {

2 public:

3 GlobalPools(size_t t_numOfPools);

4 GlobalLinkedPool& getPool(size_t t_size);

5 private:

6 std::vector<rpools::GlobalLinkedPool,

7 mallocator<rpools::GlobalLinkedPool>

8 > m_pools;

9 };

The getPool method returns the pool that can hold the specified size. This
method requires the argument to be a multiple of 8, because all the Glob-
alLinkedPools of the class can hold sizes up to a multiple of 8. Please note that
pools that have a size that is a multiple of 8 have a slot alignment of 8 bytes,
while pools of size 16, have 16 bytes aligned slots.

The std::vector class can take an optional template argument which specifies
the type of allocator it should use. In this case, m pools uses mallocator to allo-
cate space, as seen at line 7. This allocator is used to ensure that std::vector does
not call new or delete, but uses malloc and free instead. The operator new

function is overriden, and calls custom new. If custom new creates std::vectors,
which in turn call operator new, then this will cause a stack overflow. In the
case of GlobalPools, mallocator is used to prevent this.

Listing 5.9: The implementation of the CustomNew allocator.

1 namespace {

2 using namespace rpools;

3

4 const size_t __threshold = 128; // malloc performs equally well

5 // on objects of size > 128

6 const size_t __mod = sizeof(void*) - 1;

7 const size_t __logOfVoid = std::log2(sizeof(void*));

8

9 // Used to mark the first 16 bytes of a malloc-d region

10 struct MallocHeader {

11 char validity[16] = " \0";

12 };

13
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14 GlobalPools& getPools() {

15 static GlobalPools pools(__threshold >> __logOfVoid);

16 return pools;

17 }

18 }

19

20 void* custom_new_no_throw(size_t t_size, size_t t_alignment) {

21 if (t_size > __threshold) {

22 auto addr = static_cast<char*>(std::malloc(t_size +

23 sizeof(MallocHeader)));

24 auto header = new(addr) MallocHeader();

25 std::strcpy(header->validity, "IsThIsMaLlOcD!\0");

26 return addr + sizeof(MallocHeader);

27 } else {

28 size_t remainder = t_size & __mod; // t_size % sizeof(void*)

29 // round up to the next multiple of sizeof(void*)

30 t_size = remainder == 0 ? t_size : (t_size + __mod) & ~__mod;

31 t_size += (mod(t_size, t_alignment)) == 0 ? 0 : sizeof(void*);

32 void* addr = getPools().getPool(t_size).allocate();

33 return addr;

34 }

35 }

36

37 void* custom_new(size_t t_size, size_t t_alignment) {

38 void* toRet = custom_new_no_throw(t_size, t_alignment);

39 if (toRet == nullptr) {

40 throw std::bad_alloc();

41 }

42 return toRet;

43 }

44

45 void custom_delete(void* t_ptr) noexcept {

46 auto cAddr = reinterpret_cast<char*>(t_ptr);

47 cAddr -= sizeof(MallocHeader);

48 auto header = reinterpret_cast<MallocHeader*>(cAddr);

49 if (std::strcmp(header->validity, "IsThIsMaLlOcD!\0") == 0) {

50 free(cAddr);

51 } else {

52 const PoolHeaderG& ph = GlobalLinkedPool::getPoolHeader(t_ptr);

53 getPools().getPool(ph.sizeOfSlot).deallocate(t_ptr);

54 }

55 }

The system must be able to differentiate between pointers that have been re-
turned by malloc, and those that have been returned by GlobalLinkedPool.
Lines 10-12 define a structure which will be used to mark pointers that are re-
turned by malloc. Lines 21-27 describe the case when malloc is used to satisfy
the request. Instead of allocating t size bytes, the implementation allocates
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t size + 16 bytes to store an additional MallocHeader3. This overhead is hid-
den from the user by adding 16 bytes to the address that is returned. This
ensures that MallocHeader is not overwritten. Lines 46-49 implement the check
if the pointer was allocated with malloc or not. This is done by subtracting
16 bytes from the pointer, and checking whether the first 16 bytes can be cor-
rectly interpreted as a string which indicates that the pointer was indeed created
through malloc. If the specific string is not found, then it must be the case that
the pointer belongs to a GlobalLinkedPool4. This method has one obvious flaw.
There is a chance that it might detect a pointer as being allocated with malloc

when it is not. However, there is a 1 in 264 − 1 chance of this to happening,
which is very low.

An alternative approach is to store all pointers returned by malloc in a con-
tainer. This approach is poor, because the pointer check would take O(n) time,
where n is the number of pointers allocated with malloc. The MallocHeader
approach performs this check in constant time, which is more desirable. Please
note that both methods will use additional memory to store the information
whether a pointer was returned by malloc or not. The two approaches use the
same amount of memory to store this information, but their running times are
different.

User data

MallocHeader

0x00000020 0x00000030 0x000000C4

Figure 5.1: A marked malloc pointer.

For example, if a user allocates 148 bytes, custom new will use malloc to
satisfy the request. The pointer returned by malloc is going to be marked, as
seen in figure 5.1. Suppose that malloc returns the pointer 0x00000020. The
user of custom new will receive the pointer 0x00000030, because the implemen-
tation hides the MallocHeader. If the user deallocates the pointer 0x00000030,
then the MallocHeader can be found by subtracting 16 from this address, as
seen in figure 5.1.

The threshold value is 128 because GlobalLinkedPool allocation and deal-
location times decrease for objects of larger sizes. This was observed during
testing and benchmarking.

Lines 28-33 use GlobalLinkedPool to satisfy the requests smaller than 128
bytes. This is done by rounding the given size to the next multiple of 8 or 16
depending on the given alignment. It is necessary to round the size because of
the getPool method of the GlobalPools class. Pools of sizes that are divisble by

3Because sizeof(MallocHeader) = 16.
4C++ does not have a byte type, but a char has a size of 1 byte. The string denotes just

a sequence of bytes, and the actual sequence is hard-coded into the implementation.
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16 can satisfy any alignment as long as it is not over 16. Thus, if the requested
alignment is 8 or less, the size is rounded to the next multiple of 8. The allocated
size is rounded to a multiple of 16, if and only if the required alignment is 16.

In order to speed up the implementation, instead of using the regular modulo
operator, it is possible to use the bitwise-and operator to compute the modulo
of a number. Bitwise-and can be used to calculate the modulo, if and only if
the right hand side of the modulo operation is a power of two. In the case of
alignments this is always the case, thus the implementation can use bitwise-and
to speed up the execution. This is seen at line 28, and 31 where the mod function
is responsible for carrying out this optimization.

If a pointer is deallocated, and it was not returned by malloc, then it was
surely allocated with a GlobalLinkedPool. The implementation has to find out
which of the 16 pools returned this pointer. Earlier it was mentioned that
the new pool header also keeps track of the size of the slot. This means that
given a pointer that is known to be allocated by a pool, the address can be
masked in order to get the pool header, and from there the size of the slot.
GlobalPools offers a method for retrieving the pool which has a certain size.
The implementation calls this method, and passes the size of the slot as a
parameter. The returned GlobalLinkedPool can be use to safely deallocate the
pointer.

5.4 Overriding and injecting CustomNew

This section describes two different methods of making CustomNew available
to any program without changing the source code.

LinkedPool and CustomNew can be used directly in any program, but as it
was described in chapter 3, the user must also be able to inject these into pro-
grams without needing to modify their source files. In this chapter, linkedpool is
going to be used to refer to the shared library which contains the implementa-
tion of LinkedPool. Similarly, customnew is a shared library which contains the
implementation of CustomNew, but also the new implementations of operator
new and operator delete.

5.4.1 The LD PRELOAD trick

When customnew is linked with a program, there will be two definitions for
operator new and operator delete, one provided by the standard C++ li-
brary, and one provided by customnew. The linker will use the first definition
it finds to ‘implement’ operator new and operator delete. The C and C++
standard libraries are the first libraries that are linked to a program. This means
that if customnew is linked after these, the new and delete operators will use
the C++ implementations of operator new and operator delete.

The LD PRELOAD environment variable is used to instruct the linker to
load the specified shared libraries before any other libraries. This means that
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setting the LD PRELOAD variable to the path of customnew will enable pro-
grams to use CustomNew without changing their source code. If the program
uses the new operator, then the custom new function will be called instead5.

The main advantage of this method is that customnew can be injected into
any binary. It does not require any source code modifications, and users can see
the results of using a memory pool very easily. However, the main disadvantage
is that all objects will be 16 bytes aligned. The operator new function always
aligns objects at 16 bytes boundaries. Because of this, operator new does not
have access to the alignment of the allocation. Therefore, custom new will be
asked to align objects at 16 bytes boundaries, which will cause the program to
waste memory.

5.4.2 The LLVM method

The CustomNewPass is a basic block pass that changes all the calls to operator

new and operator delete with calls to custom new and custom delete. This
is done by looping through all instructions of a basic block, and modifying all
CallInst and InvokeInst instances whose first argument is either operator new

or operator delete. Listing 5.11 shows the LLVM bytecode generated from
the C++ program shown in listing 5.10.

Listing 5.10: A C++ program which uses new and delete.

1 int main() {

2 int* x = new int();

3 delete x;

4 return 0;

5 }

Listing 5.11: An LLVM function which calls new and then delete.

1 ; Function Attrs: noinline norecurse optnone uwtable

2 define i32 @main() #0 {

3 ...

4 %3 = call i8* @_Znwm(i64 4) #3

5 %4 = bitcast i8* %3 to i32*

6 store i32 0, i32* %4, align 4

7 store i32* %4, i32** %2, align 8

8 %5 = load i32*, i32** %2, align 8

9 %6 = icmp eq i32* %5, null

10 br i1 %6, label %9, label %7

11

12 ; <label>:7: ; preds = %0

13 %8 = bitcast i32* %5 to i8*

14 call void @_ZdlPv(i8* %8) #4

15 br label %9

5This happens because operator new was overriden, and now it calls custom new instead
of malloc
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16

17 ; <label>:9: ; preds = %7, %0

18 ret i32 0

19 }

Line 6 of listing 5.11 is a call to new6, and can be translated to call void*

operator new(i64 4). Line 16 is a call to delete (call void operator delete(i8*

%8)).
These two lines represent the calls that need to be changed. At line 7, there

is a bitcast from i8* to i32*, that is preceded by the call to new7. Its role is to
convert an i8* to an i32*. In this case, the i8* that is converted is the return
value of the call to new. This means that the next instruction after the call to
new can be used to find out the type that is allocated. This is important because
if the type is known, so is the alignment. The custom new function takes an
extra argument which is the alignment. Alignments that are greater than 8
cause objects to be placed into pools where slots are 16 bytes aligned. This
causes programs to lose a lot of memory. Using the LLVM approach ensures
that the correct alignment is passed to custom new, which means the allocation
will be placed into a more suitable pool which reduces the memory usage. The
alignment is easy to extract for base types, and for base classes. However, it
was necessary to come up with a recursive solution which finds the alignment
of complex structures such as classes that inherit from any number of classes.

The allocated type is easy to find in the case when there is a call to new.
However, new can also be invoked, rather than called.

Listing 5.12: Basic blocks which contain an invoke to new.

1 ; <label>:54: ; preds = %52

2

3 ...

4

5 %56 = invoke i8* @_Znwm(i64 48) #15

6 to label %57 unwind label %69

7

8 ; <label>:57: ; preds = %54

9 %58 = bitcast i8* %56 to %class.Sudoku*

10

11 ...

The invoke instruction calls the specified function, new in this case. If the
function returns normally, then execution jumps to basic block %57, but if an
exception occurs, then the execution jumps to basic block %69. This information
is specified on line 6 of listing 5.12. Note that there is no bitcast instruction after
the invoke to new. It has been observed that the bitcast instruction that holds
the type of the allocation, can be found in basic block %57, which is the basic

6 Znwm is the mangled version of operator new.
7The i8* type is actually void* in C++.
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block to which execution jumps when the invoke to new returns successfully.
This means that the type can be extracted from the first bitcast instruction
found in the ‘destination’ basic block of the invoke instruction.

The implementation of this pass can be found in the appendix in listing B.58.
The main disadvantage of this method is that in order to inject CustomNew

into programs, they have to be compiled with clang, and the pass must be run as
part of the compilation process by specifying an extra argument to the compiler.

5.5 CustomNewDebug

This is an allocator that is injected into programs through LLVM, and keeps
track of the number of objects that have been allocated, and deallocated.

Listing 5.13 shows the implementation of the CustomNewDebug allocator.

Listing 5.13: The implementation of CustomNewDebug

namespace {

AllocCollector ac;

}

void* custom_new_no_throw(size_t t_size, size_t t_alignment,

const char* t_name, size_t t_baseSize,

const char* t_funcName) {

void* toRet = malloc(t_size);

ac.addObject(t_size, t_alignment, t_name, t_baseSize, t_funcName,

toRet);

return toRet;

}

void* custom_new(size_t t_size, size_t t_alignment,

const char* t_name, size_t t_baseSize,

const char* t_funcName) {

void* toRet = custom_new_no_throw(t_size, t_alignment, t_name,

t_baseSize, t_funcName);

if (toRet == nullptr) {

throw std::bad_alloc();

}

return toRet;

}

void custom_delete(void* t_ptr) noexcept {

ac.removeObject(t_ptr);

free(t_ptr);

}

In this case, custom new takes additional arguments. These arguments will
be computed at compile time using LLVM. The CustomNewDebugPass is a basic
block pass that works very similarly to CustomNewPass. This pass supplies
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extra information to the debug version of custom new, such as the name of the
function that calls new, the name of the type, and the base size of the allocated
type. A program might allocate an array of 10 integers, in which case the size
of the allocation is 40 bytes, but the base size of the allocation is 4 bytes. The
implementation of this pass can be found in the appendix in listing B.59.

The AllocCollector class is responsible for recording all the information that
is given to custom new. This is done by saving the information in a map. Note
that the contents of the map change every millisecond, thus the implementation
needs to spawn a thread which blocks execution every 10ms to save the state
of the map into a data structure which is written to a file when execution ends.
The problem with this approach is that the snapshots are kept in memory, and
therefore, the program might run out of memory quickly. Listing 5.14 shows
the interface of the AllocCollector class.

Listing 5.14: The interface of the AllocCollector class.

class AllocCollector {

public:

AllocCollector();

void addObject(size_t t_size, size_t t_align,

const char* t_name, size_t t_baseSize,

const char* t_funcName, void* t_ptr);

void removeObject(void* t_ptr);

void takeSnapshot();

virtual ~AllocCollector();

private:

...

json m_snapshots;

...

size_t m_snapshotCount = 0;

void run();

};

The addObject method, shown in listing 5.14, records the given allocation
in the map. The last parameter of this method represents the pointer to the
object that is being allocated. This is used as the key in the map of allocations.
The removeObject method removes an entry from the map. The reason why
pointers are the keys is because custom delete has only access to the pointer
being deleted. The takeSnapshot method is called every 10ms, and saves the
information stored in the map into m snapshots. When the destructor of Al-
locCollector is called, the class writes the contents of m snapshots into the file
specified by m objectsFile.

A possible output of a program that was compiled with the CustomNewDe-
bugPass is shown in listing 5.15.

Listing 5.15: An example of one snapshot.

1 {
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2 [

3 {

4 "Sudoku": {

5 "8": {

6 "48": {

7 "array": 1,

8 "base_size": 48,

9 "current": 4,

10 "function": "Sudoku::successors() const",

11 "peak": 4

12 }

13 }

14 },

15 "std::pair<int, int>": {

16 "4": {

17 "128": {

18 "array": 16,

19 "base_size": 8,

20 "current": 0,

21 "function": "__gnu_cxx::new_allocator<std::pair<int, int>

>::allocate(unsigned long, void const*)",

22 "peak": 1

23 },

24 "16": {

25 "array": 2,

26 "base_size": 8,

27 "current": 0,

28 "function": "__gnu_cxx::new_allocator<std::pair<int, int>

>::allocate(unsigned long, void const*)",

29 "peak": 1

30 }

31 }

32 }

33 }

34 ]

Listing 5.15 is an example of a snapshot in JSON format. At lines 4-14,
it can be seen that there are some Sudoku objects in memory. The Sudoku
type is 8 bytes aligned, and it has an allocation size of 48 bytes. The base
size is also 48 bytes, which means that the user always allocates single Sudoku
objects, and not arrays. At the moment the snapshot was taken, there were 4
allocations of this type in memory, and the peak number of allocations was 4.
These allocations were made in the function Sudoku::successors() const.

The std::pair<int,int> type has two entries in the file. The first entry (line
17) suggests that an allocation of 128 bytes was made, but the base size is 8
bytes. This means that the program allocated 16 contiguous objects of this
type. Similarly for line 24, where there are only 2 contiguous objects of type
std::pair<int,int>.
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For larger programs the amount of information that is generated increases
substantially. Manually examining JSON files to determine the memory usage
of the program is very tedious. The format of a snapshot is not very readable
to users. All these issues can be solved by creating a program that can show
this data in a more sensible format.

The Python script generate obj alloc html.py is responsible for creating an
HTML webpage that will provide the user with the utilities mentioned above.
Figure 5.2 shows an example of a page that is generated from a JSON file.

Figure 5.2: The Sudoku objects allocated during the execution of a program.

Figure 5.2 shows that the rendered page provides a filter functionality for
both types and functions. This is useful in cases when the user wants to check
the number of allocated objects of a certain type, or find out if a certain function
allocates too many objects. Note that if a user clicks any of the headers of the
table, the table will be sorted according to the clicked header.

5.6 Testing

All of the tools and libraries have been unit-tested, except for the LLVM passes.
This is due to the fact that it is not trivial to test an LLVM pass. The best way
to test the compiler passes is to run them on complex programs. If a program
compiles successfully, and it runs as expected, then there is a high chance that
the pass works correctly. The passes have been tested on several non-trivial
programs, such as a game, and the Popf planner.

Testing the allocators has been a challenging task. There are test cases
which check whether the returned pointers are correctly aligned, or if the Pool-
Header contains the data that is expected. The best test case is to run the
allocator on a program. If programs compiled with the CustomNewPass work
as excepted, then the pools work correctly as well, because CustomNew uses
GlobalLinkedPools.

Most bugs have been found by running CustomNewPass on the Popf planner.
This program uses a lot of memory, and also allocates complex structures. This
means that small bugs in the implementation crash the program very easily.
Some bugs were trivial to fix, while others required some research.
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Chapter 6

Professional issues

The code of conduct of the British Computing Sociecty (BCS) was taken into
account while developing this project.

In order to implement some of the features and optimzations of the alloca-
tors presented in this report, it was necessary to use a few external open-source
libraries. For instance unit testing was done with the Catch2 testing framework.
The LinkedPool allocator relies on the performance of avl tree, and light lock,
both of which are open-source libraries. The authors of these libraries are ack-
lowledged in the appendix in the file B.3. These libraries reduced the devel-
opment time of the project considerably, and becaues of the extra time, it was
possible to create several injection mechanisms.

This project will be open-sourced in order to allow other programmers to
contribute, and use the allocators in their own software. The project is heavily
documented in order to make contributing to the project easier.

The advantages and disadvantages of the allocators presented in this re-
port are well documented, and the performance is described in great detail in
chapter 7.

Tools such as GDB, Valgrind, and Clang-Tidy have been used to ensure that
the project meets certain quality standards. Valgrind and Clang-Tidy report no
errors or warnings. The project was developed such that it works on multiple
platforms.
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Chapter 7

Benchmarking

There are many benchmarks that have been implemented in order to assess the
performance of the LinkedPool allocator. LinkedPool will be compared to two of
the best and most popular pool implementations: boost and MemoryPool, and to
malloc. When running benchmarks, the most optimized version of LinkedPool
will be used. Please note that benchmark results do not include boost. This is
because deallocation times are very high, and therefore it is infeasible to run
the benchmarks. The deallocation cannot be skipped because boost crashes in
the case where the objects are not deallocated. Thus, it was easier to remove it
from the benchmarks. LinkedPool is comparable to boost pool when allocating
small objects, but boost is very slow when deallocating memory.

7.1 Allocation and deallocation time benchmarks

There are several benchmarks that record the time taken to allocate and deallo-
cate objects of a certain type. All of them differ in the order in which objects are
allocated and deallocated. All benchmarks take as input the number of objects
to be allocated. The objects that are allocated have a size of 24 bytes.

7.1.1 The plot elapsed time script

This is a python script which runs a given benchmark several times on inputs
of different size, and plots the results using matplotlib.

Listing 7.1: Sample execution of the plot elapsed time script.

python3 plot_elapsed_time -b bench_worst -n 100000

In listing 7.1 the script is run on the bench worst benchmark. The script
is going to run this benchmark with an input of 10,000 objects, then 20,000
objects, and so on until 100,000. When a benchmark is complete, the script
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records the output, and saves it for later use. When all benchmarks are done,
the data is plotted.

7.1.2 bench normal

This is a benchmark which allocates N objects, and then deallocates them in
reverse order. This is a rather simple benchmark, but it is important to see how
LinkedPool compares with other allocators in simpler cases as well. Table 7.1
shows the allocation and deallocation times of the three allocators.

Operation LinkedPool MemoryPool new/delete
allocation 277.76 101.91 428.73

deallocation 193.59 111.46 166.02

Table 7.1: Allocation and deallocation times for the three allocators on
bench normal when allocating 10,000,000 objects.

It can be seen that LinkedPool performs better than new, but worse than
MemoryPool. MemoryPool performs allocations almost 4 times as fast as new,
while LinkedPool performs only twice as fast. Figure 7.2 shows that LinkedPool
underperforms when objects are deallocated in a sequence.
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Figure 7.1: Allocation times of bench normal.
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Figure 7.2: Deallocation times of bench normal.

7.1.3 bench specified

This is a benchmark which allocates and deallocates a number objects in a
certain predefined order. The actual order can be found in listing B.69. This is
also a simpler benchmark, but this time it simulates a program that allocates a
smaller number of objects, and then deallocates some of them. For instance a
game might have this allocation pattern. For each frame, a number of objects
are allocated, and by the time a new frame is rendered, some of them are
deallocated.

Operation LinkedPool MemoryPool new/delete
allocation 118.37 63.91 149.83

deallocation 110.18 58.03 91.46

Table 7.2: Allocation and deallocation times for the three allocators on
bench specified when allocating 10,000,000 objects.

The result is similar to bench normal. MemoryPool outperforms both allo-
cators, and LinkedPool allocates faster than new, but deallocates slower than
delete.
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Figure 7.3: Allocation times of bench specified.
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Figure 7.4: Deallocation times of bench specified.

7.1.4 bench random

This benchmark allocates a large number of objects, and deallocates them in
a random order. Allocations are stored in a std::vector. This means that the
algorithm generates a random list of indices which specifies the random order in
which the objects should be deallocated. This list is shared between the three
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allocators to ensure that all of them use the same deallocation sequence.

Operation LinkedPool MemoryPool new/delete
allocation 282.59 101.55 412.50

deallocation 1639.80 1378.75 2454.75

Table 7.3: Allocation and deallocation times for the three allocators on
bench random when allocating 10,000,000 objects.

Both table 7.3 and figure 7.5 show that LinkedPool is now somewhere be-
tween the other two allocators in terms of allocation speed. Figure 7.6 shows
that LinkedPool is now closer to MemoryPool in terms of deallocation speed.
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Figure 7.5: Allocation times of bench random.
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Figure 7.6: Deallocation times of bench random.

7.1.5 bench random2

This is a another random benchmark which works similarly to bench random. It
involves allocating a random number of objects, and then deallocating random
objects from the list of allocated objects. The main difference between the
two is the fact that this benchmark does not allocate all objects, but only a
random number of them. This is a benchmark that generates a random pattern
of memory allocations, and deallocations which mirrors the pattern of most
programs.

Operation LinkedPool MemoryPool new/delete
allocation 30.00 25.72 65.76

deallocation 302.37 273.85 329.65

Table 7.4: Allocation and deallocation times for the three allocators on
bench random2 when allocating 1,000,000 objects.

In the case of bench random2, it can be seen in figure 7.7 that LinkedPool is
closer to MemoryPool than it is to new. Figure 7.8 shows that the 3 allocators
have the same growth, but MemoryPool is still faster than LinkedPool.
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Figure 7.7: Allocation times of bench random2.
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Figure 7.8: Deallocation times of bench random2.

7.1.6 bench worst

So far all benchmarks were based on possible allocation patterns that programs
might use. However, bench worst is a benchmark which generates an allocation,
and deallocation sequence which tries to make LinkedPool underperform. This
is done by generating as many page faults as possible, and by always deallocating
objects that are known to be in different pools.
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Operation LinkedPool MemoryPool new/delete
allocation 312.11 102.45 429.95

deallocation 1525.69 966.04 1946.30

Table 7.5: Allocation and deallocation times for the three allocators on
bench worst when allocating 10,000,000 objects.

Both figures 7.9 and 7.10 show that even though this benchmark allocates,
and deallocates objects in such a way that makes LinkedPool underperform, the
pool allocator is still faster than new and delete.
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Figure 7.9: Allocation times of bench worst.
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Figure 7.10: Deallocation times of bench worst.

7.2 The plot memory usage script

This is a Python script which runs Valgrind’s massif tool on a few programs,
and plots the results. The massif tool records the heap and stack usage of a
program.

There are 3 programs, and each of them allocate and deallocate a number
of objects with a different allocator. The allocation pattern is the same as in
bench normal. Between each allocation and deallocation there is a delay of 1ms.
This is because the massif tool takes snapshots every few millisecond. These
programs run quite quickly, but if there is a short pause between allocations,
then massif can snapshot the memory usage of the program with more accuracy.
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Figure 7.11: Heap and stack usage of the three allocators when allocating 10,000
objects

THe orange line is new, the green line is LinkedPool, and the blue line is
MemoryPool.

It can be seen in figure 7.11 that all allocators grow lineraly to their peak.
MemoryPool uses less memory than the other two allocators. Is uses 394856
KBs of heap memory while LinkedPool uses 519440 KBs and new uses 551960
KBs. Although the stack usage is very similar, LinkedPool uses more stack at
the point where the peak is reached, but the difference is negligible.
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7.3 The time alloc benchmarks script

This script runs a few allocation benchmarks, and plots their memory usage.
The benchmarks allocate objects of size 8, 16, 32, and so on until 1024 bytes.
Each type of object is allocated as many times as needed until it occupies 0.5
GBs of memory. Therefore the benchmark allocates 4 GBs of memory. There
are 9 benchmarks, and they work in the following way: the first benchmark
allocates all the objects with new, the second benchmark allocates all objects of
size 8 with LinkedPool, and the rest with new, and so on until the last benchmark
which allocates all objects using LinkedPool.

These benchmarks were used to decide the best threshold value for Custom-
New.

al
lo

c
b

en
ch

1

al
lo

c
b

en
ch

2

al
lo

c
b

en
ch

3

al
lo

c
b

en
ch

4

al
lo

c
b

en
ch

5

al
lo

c
b

en
ch

6

al
lo

c
b

en
ch

7

al
lo

c
b

en
ch

8

al
lo

c
b

en
ch

9

0

2

4

6

8

·106

7 · 106

5 · 106

5 · 106 4 · 106 5 · 106
5 · 106

6 · 106

8 · 106

9 · 106

H
ea

p
u

sa
ge

[K
B

s]

Heap usage

Figure 7.12: Heap memory usage of all allocation benchmarks.
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Figure 7.13: The duration of the benchmark.

In figure 7.12 it can be seen that alloc bench4 and alloc bench5 use the
least memory, and in figure 7.13 these two benchmarks execute the fastest. In
alloc bench5, all objects of size 8, 16, 32, 64 bytes are allocated with LinkedPool.
This means that the theshold for malloc can be set to 64. However, alloc bench6
also performs well, even though it uses slightly more memory. This is why the
threshold is set to 128 in CustomNew.
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Chapter 8

Critical evaluation

8.1 LinkedPool

In chapter 7, it was shown that although LinkedPool performs well when com-
pared to malloc, MemoryPool performs better.

LinkedPool and MemoryPool work very similarly. Both allocators use a
linked list to keep track of empty slots, but in a different way. The reason why
MemoryPool is faster than LinkedPool is because of its simple implementation.
MemoryPool works by allocating pages of memory as well, but it does not create
a header in each pool. The allocated page is partitioned into slots, and the ad-
dress of each slot is inserted into a linked list. Each memory pool of LinkedPool
has its own linked list, but in the case of MemoryPool, the implementation keeps
track of a global linked list, which contains slots from multiple pages of memory.
When the allocate method is called, MemoryPool returns the first element in
the linked list. When a slot is freed, the slot is simply added back into the
list. The implementation is simple, and achieves all the goals of a memory pool
allocator. However, MemoryPool has a significant problem, which LinkedPool
does not have. In figure 7.11, each allocator’s memory usage increases until
they reach their peaks. After that, LinkedPool ’s and new’s memory usage starts
decreasing to zero, while the usage of MemoryPool remains at the value of its
peak until the execution ends. This is a problem, because the memory that
has supposedly been deallocated is not returned to the system. This means
that memory is leaked. This is very bad for programs that rely on releasing
the memory of some computation to make space for some other memory-heavy
computation. Such programs might run out of memory if they use MemoryPool.
This is the main reason why that the implementation described in this report
uses a pool header. If pools are empty, there is no need to keep them in memory,
and can be deallocated.
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8.2 CustomNew

It is hard to decide whether the CustomNew allocator performs better than
malloc. Therefore, CustomNew is going to be injected into a few programs,
and their memory usage will be compared to that of the program run in a
normal environment.

8.2.1 alloc benchmark1

This is one of the benchmarks described in chapter 7. It allocates 4GB of
memory, but its total memory usage is a lot higher, as seen in table 7.12. In order
to asses the performance of CustomNew, this benchmark is first run normally,
and then CustomNew is injected into it by using the two methods described in
chapter 5. The memory usage and execution time of the benchmark is recorded
during each execution.

Method Time taken (seconds) Memory Usage (KB)
normal execution 4.71 6810616
LD PRELOAD 4.37 6378032

LLVM 4.71 5319116

Table 8.1: alloc bench1 run with the three methods.

Table 8.1 shows that the running time of the three methods is quite similar.
The memory usage, on the other hand, is very different. When executed nor-
mally, the total memory usage of alloc bench1 is 6.8 GBs. After using LLVM
to inject the CustomNew allocator into the benchmark, the memory usage of
the program is reduced to 5.3 GBs, which is a significant improvement. The
LD PRELOAD method also performs well, but the issue described in chap-
ter 5 can be seen in this case. Because the alignment is always considered to
be 16, the objects will be allocated in different pools than expected. However,
the LLVM-based method knows the true alignment, therefore all allocations are
placed into the correct pools.

8.2.2 Popf

This is a planner which can be used to find solutions to planning problems.
Planners consume a lot of memory when they create and traverse the search
space. If the memory usage is reduced, then the planner can consider more
states in the search space, which can lead to finding optimal solutions. In order
to determine if the pools perform well, the Popf planner is executed normally,
and with the two injection mechanism.
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Method Time taken (seconds) Memory Usage (KB)
normal execution 98.24 2755176
LD PRELOAD 107.38 4070300

LLVM 104.69 3957336

Table 8.2: Popf run with the three methods.

Table 8.2 shows that the running times are different. The Popf planner
executed faster normally than with the injected pools. The memory usage also
increased rather than decreased. The reason why this happens is because Popf
allocates a large amount of objects of size 17, which are 16 byte aligned. This
means that CustomNew will round this size to 32 bytes. This makes the program
waste 15 bytes per object, which is almost double the amount of the overheads
of malloc per small object.
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Chapter 9

Conclusion

Memory pools are very useful, and can be used to reduce the memory usage
of programs. LinkedPool and MemoryPool provide a way to allocate smaller
objects with less overheads than malloc. These allocators are also very fast in
terms of allocation and deallocation speed, as seen in chapter 7.

Injecting memory pools, on the other hand, usually works in the favour of
a program, but it can sometimes make it perform worse, like in the case of
Popf. This means that injecting pools might not be such a great idea all the
time. The best way to reduce the memory usage of a program is to introduce
memory pools for the types that are allocated most often. In order to find out
which objects are allocated repeatedly, customnewdebug can be injected into a
program in order to gather this information. Based on this, the authors can
optimize the memory usage by introucing memory pools for the types that are
most commonly allocated. This approach might seem tedious, but it provides
the best overall performance. The required source code changes are minimal,
because typically only a small number of types are allocated very often, which
means only a few classes need to be changed.
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